1 | /********************************************************************** <BR>
|
---|
2 | This file is part of Crack dot Com's free source code release of
|
---|
3 | Golgotha. <a href="http://www.crack.com/golgotha_release"> <BR> for
|
---|
4 | information about compiling & licensing issues visit this URL</a>
|
---|
5 | <PRE> If that doesn't help, contact Jonathan Clark at
|
---|
6 | golgotha_source@usa.net (Subject should have "GOLG" in it)
|
---|
7 | ***********************************************************************/
|
---|
8 |
|
---|
9 | /*
|
---|
10 | * Layer 2 Alloc tables ..
|
---|
11 | * most other tables are calculated on program start (which is (of course)
|
---|
12 | * not ISO-conform) ..
|
---|
13 | * Layer-3 huffman table is in huffman.h
|
---|
14 | */
|
---|
15 |
|
---|
16 | struct al_table alloc_0[] = {
|
---|
17 | {4,0},{5,3},{3,-3},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},{10,-511},
|
---|
18 | {11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},{16,-32767},
|
---|
19 | {4,0},{5,3},{3,-3},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},{10,-511},
|
---|
20 | {11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},{16,-32767},
|
---|
21 | {4,0},{5,3},{3,-3},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},{10,-511},
|
---|
22 | {11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},{16,-32767},
|
---|
23 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
24 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
|
---|
25 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
26 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
|
---|
27 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
28 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
|
---|
29 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
30 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
|
---|
31 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
32 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
|
---|
33 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
34 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
|
---|
35 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
36 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
|
---|
37 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
38 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
|
---|
39 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
40 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
41 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
42 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
43 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
44 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
45 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
46 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
47 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
48 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
49 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
50 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
51 | {2,0},{5,3},{7,5},{16,-32767},
|
---|
52 | {2,0},{5,3},{7,5},{16,-32767},
|
---|
53 | {2,0},{5,3},{7,5},{16,-32767},
|
---|
54 | {2,0},{5,3},{7,5},{16,-32767} };
|
---|
55 |
|
---|
56 | struct al_table alloc_1[] = {
|
---|
57 | {4,0},{5,3},{3,-3},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},{10,-511},
|
---|
58 | {11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},{16,-32767},
|
---|
59 | {4,0},{5,3},{3,-3},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},{10,-511},
|
---|
60 | {11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},{16,-32767},
|
---|
61 | {4,0},{5,3},{3,-3},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},{10,-511},
|
---|
62 | {11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},{16,-32767},
|
---|
63 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
64 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
|
---|
65 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
66 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
|
---|
67 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
68 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
|
---|
69 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
70 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
|
---|
71 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
72 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
|
---|
73 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
74 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
|
---|
75 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
76 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
|
---|
77 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
78 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{16,-32767},
|
---|
79 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
80 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
81 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
82 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
83 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
84 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
85 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
86 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
87 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
88 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
89 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
90 | {3,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{16,-32767},
|
---|
91 | {2,0},{5,3},{7,5},{16,-32767},
|
---|
92 | {2,0},{5,3},{7,5},{16,-32767},
|
---|
93 | {2,0},{5,3},{7,5},{16,-32767},
|
---|
94 | {2,0},{5,3},{7,5},{16,-32767},
|
---|
95 | {2,0},{5,3},{7,5},{16,-32767},
|
---|
96 | {2,0},{5,3},{7,5},{16,-32767},
|
---|
97 | {2,0},{5,3},{7,5},{16,-32767} };
|
---|
98 |
|
---|
99 | struct al_table alloc_2[] = {
|
---|
100 | {4,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},
|
---|
101 | {10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},
|
---|
102 | {4,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},
|
---|
103 | {10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},
|
---|
104 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
105 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
106 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
107 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
108 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
109 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63} };
|
---|
110 |
|
---|
111 | struct al_table alloc_3[] = {
|
---|
112 | {4,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},
|
---|
113 | {10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},
|
---|
114 | {4,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},{9,-255},
|
---|
115 | {10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},{15,-16383},
|
---|
116 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
117 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
118 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
119 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
120 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
121 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
122 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
123 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
124 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
125 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63} };
|
---|
126 |
|
---|
127 | struct al_table alloc_4[] = {
|
---|
128 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
129 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},
|
---|
130 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
131 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},
|
---|
132 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
133 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},
|
---|
134 | {4,0},{5,3},{7,5},{3,-3},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},{8,-127},
|
---|
135 | {9,-255},{10,-511},{11,-1023},{12,-2047},{13,-4095},{14,-8191},
|
---|
136 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
137 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
138 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
139 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
140 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
141 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
142 | {3,0},{5,3},{7,5},{10,9},{4,-7},{5,-15},{6,-31},{7,-63},
|
---|
143 | {2,0},{5,3},{7,5},{10,9},
|
---|
144 | {2,0},{5,3},{7,5},{10,9},
|
---|
145 | {2,0},{5,3},{7,5},{10,9},
|
---|
146 | {2,0},{5,3},{7,5},{10,9},
|
---|
147 | {2,0},{5,3},{7,5},{10,9},
|
---|
148 | {2,0},{5,3},{7,5},{10,9},
|
---|
149 | {2,0},{5,3},{7,5},{10,9},
|
---|
150 | {2,0},{5,3},{7,5},{10,9},
|
---|
151 | {2,0},{5,3},{7,5},{10,9},
|
---|
152 | {2,0},{5,3},{7,5},{10,9},
|
---|
153 | {2,0},{5,3},{7,5},{10,9},
|
---|
154 | {2,0},{5,3},{7,5},{10,9},
|
---|
155 | {2,0},{5,3},{7,5},{10,9},
|
---|
156 | {2,0},{5,3},{7,5},{10,9},
|
---|
157 | {2,0},{5,3},{7,5},{10,9},
|
---|
158 | {2,0},{5,3},{7,5},{10,9},
|
---|
159 | {2,0},{5,3},{7,5},{10,9},
|
---|
160 | {2,0},{5,3},{7,5},{10,9},
|
---|
161 | {2,0},{5,3},{7,5},{10,9} };
|
---|
162 |
|
---|