1 | /********************************************************************** <BR>
|
---|
2 | This file is part of Crack dot Com's free source code release of
|
---|
3 | Golgotha. <a href="http://www.crack.com/golgotha_release"> <BR> for
|
---|
4 | information about compiling & licensing issues visit this URL</a>
|
---|
5 | <PRE> If that doesn't help, contact Jonathan Clark at
|
---|
6 | golgotha_source@usa.net (Subject should have "GOLG" in it)
|
---|
7 | ***********************************************************************/
|
---|
8 |
|
---|
9 | /*
|
---|
10 | * jquant2.c
|
---|
11 | *
|
---|
12 | * Copyright (C) 1991-1996, Thomas G. Lane.
|
---|
13 | * This file is part of the Independent JPEG Group's software.
|
---|
14 | * For conditions of distribution and use, see the accompanying README file.
|
---|
15 | *
|
---|
16 | * This file contains 2-pass color quantization (color mapping) routines.
|
---|
17 | * These routines provide selection of a custom color map for an image,
|
---|
18 | * followed by mapping of the image to that color map, with optional
|
---|
19 | * Floyd-Steinberg dithering.
|
---|
20 | * It is also possible to use just the second pass to map to an arbitrary
|
---|
21 | * externally-given color map.
|
---|
22 | *
|
---|
23 | * Note: ordered dithering is not supported, since there isn't any fast
|
---|
24 | * way to compute intercolor distances; it's unclear that ordered dither's
|
---|
25 | * fundamental assumptions even hold with an irregularly spaced color map.
|
---|
26 | */
|
---|
27 |
|
---|
28 | #define JPEG_INTERNALS
|
---|
29 | #include "loaders/jpg/jinclude.h"
|
---|
30 | #include "loaders/jpg/jpeglib.h"
|
---|
31 |
|
---|
32 | #ifdef QUANT_2PASS_SUPPORTED
|
---|
33 |
|
---|
34 |
|
---|
35 | /*
|
---|
36 | * This module implements the well-known Heckbert paradigm for color
|
---|
37 | * quantization. Most of the ideas used here can be traced back to
|
---|
38 | * Heckbert's seminal paper
|
---|
39 | * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
|
---|
40 | * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
|
---|
41 | *
|
---|
42 | * In the first pass over the image, we accumulate a histogram showing the
|
---|
43 | * usage count of each possible color. To keep the histogram to a reasonable
|
---|
44 | * size, we reduce the precision of the input; typical practice is to retain
|
---|
45 | * 5 or 6 bits per color, so that 8 or 4 different input values are counted
|
---|
46 | * in the same histogram cell.
|
---|
47 | *
|
---|
48 | * Next, the color-selection step begins with a box representing the whole
|
---|
49 | * color space, and repeatedly splits the "largest" remaining box until we
|
---|
50 | * have as many boxes as desired colors. Then the mean color in each
|
---|
51 | * remaining box becomes one of the possible output colors.
|
---|
52 | *
|
---|
53 | * The second pass over the image maps each input pixel to the closest output
|
---|
54 | * color (optionally after applying a Floyd-Steinberg dithering correction).
|
---|
55 | * This mapping is logically trivial, but making it go fast enough requires
|
---|
56 | * considerable care.
|
---|
57 | *
|
---|
58 | * Heckbert-style quantizers vary a good deal in their policies for choosing
|
---|
59 | * the "largest" box and deciding where to cut it. The particular policies
|
---|
60 | * used here have proved out well in experimental comparisons, but better ones
|
---|
61 | * may yet be found.
|
---|
62 | *
|
---|
63 | * In earlier versions of the IJG code, this module quantized in YCbCr color
|
---|
64 | * space, processing the raw upsampled data without a color conversion step.
|
---|
65 | * This allowed the color conversion math to be done only once per colormap
|
---|
66 | * entry, not once per pixel. However, that optimization precluded other
|
---|
67 | * useful optimizations (such as merging color conversion with upsampling)
|
---|
68 | * and it also interfered with desired capabilities such as quantizing to an
|
---|
69 | * externally-supplied colormap. We have therefore abandoned that approach.
|
---|
70 | * The present code works in the post-conversion color space, typically RGB.
|
---|
71 | *
|
---|
72 | * To improve the visual quality of the results, we actually work in scaled
|
---|
73 | * RGB space, giving G distances more weight than R, and R in turn more than
|
---|
74 | * B. To do everything in integer math, we must use integer scale factors.
|
---|
75 | * The 2/3/1 scale factors used here correspond loosely to the relative
|
---|
76 | * weights of the colors in the NTSC grayscale equation.
|
---|
77 | * If you want to use this code to quantize a non-RGB color space, you'll
|
---|
78 | * probably need to change these scale factors.
|
---|
79 | */
|
---|
80 |
|
---|
81 | #define R_SCALE 2 /* scale R distances by this much */
|
---|
82 | #define G_SCALE 3 /* scale G distances by this much */
|
---|
83 | #define B_SCALE 1 /* and B by this much */
|
---|
84 |
|
---|
85 | /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
|
---|
86 | * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
|
---|
87 | * and B,G,R orders. If you define some other weird order in jmorecfg.h,
|
---|
88 | * you'll get compile errors until you extend this logic. In that case
|
---|
89 | * you'll probably want to tweak the histogram sizes too.
|
---|
90 | */
|
---|
91 |
|
---|
92 | #if RGB_RED == 0
|
---|
93 | #define C0_SCALE R_SCALE
|
---|
94 | #endif
|
---|
95 | #if RGB_BLUE == 0
|
---|
96 | #define C0_SCALE B_SCALE
|
---|
97 | #endif
|
---|
98 | #if RGB_GREEN == 1
|
---|
99 | #define C1_SCALE G_SCALE
|
---|
100 | #endif
|
---|
101 | #if RGB_RED == 2
|
---|
102 | #define C2_SCALE R_SCALE
|
---|
103 | #endif
|
---|
104 | #if RGB_BLUE == 2
|
---|
105 | #define C2_SCALE B_SCALE
|
---|
106 | #endif
|
---|
107 |
|
---|
108 |
|
---|
109 | /*
|
---|
110 | * First we have the histogram data structure and routines for creating it.
|
---|
111 | *
|
---|
112 | * The number of bits of precision can be adjusted by changing these symbols.
|
---|
113 | * We recommend keeping 6 bits for G and 5 each for R and B.
|
---|
114 | * If you have plenty of memory and cycles, 6 bits all around gives marginally
|
---|
115 | * better results; if you are short of memory, 5 bits all around will save
|
---|
116 | * some space but degrade the results.
|
---|
117 | * To maintain a fully accurate histogram, we'd need to allocate a "long"
|
---|
118 | * (preferably unsigned long) for each cell. In practice this is overkill;
|
---|
119 | * we can get by with 16 bits per cell. Few of the cell counts will overflow,
|
---|
120 | * and clamping those that do overflow to the maximum value will give close-
|
---|
121 | * enough results. This reduces the recommended histogram size from 256Kb
|
---|
122 | * to 128Kb, which is a useful savings on PC-class machines.
|
---|
123 | * (In the second pass the histogram space is re-used for pixel mapping data;
|
---|
124 | * in that capacity, each cell must be able to store zero to the number of
|
---|
125 | * desired colors. 16 bits/cell is plenty for that too.)
|
---|
126 | * Since the JPEG code is intended to run in small memory model on 80x86
|
---|
127 | * machines, we can't just allocate the histogram in one chunk. Instead
|
---|
128 | * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
|
---|
129 | * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
|
---|
130 | * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
|
---|
131 | * on 80x86 machines, the pointer row is in near memory but the actual
|
---|
132 | * arrays are in far memory (same arrangement as we use for image arrays).
|
---|
133 | */
|
---|
134 |
|
---|
135 | #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
|
---|
136 |
|
---|
137 | /* These will do the right thing for either R,G,B or B,G,R color order,
|
---|
138 | * but you may not like the results for other color orders.
|
---|
139 | */
|
---|
140 | #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
|
---|
141 | #define HIST_C1_BITS 6 /* bits of precision in G histogram */
|
---|
142 | #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
|
---|
143 |
|
---|
144 | /* Number of elements along histogram axes. */
|
---|
145 | #define HIST_C0_ELEMS (1<<HIST_C0_BITS)
|
---|
146 | #define HIST_C1_ELEMS (1<<HIST_C1_BITS)
|
---|
147 | #define HIST_C2_ELEMS (1<<HIST_C2_BITS)
|
---|
148 |
|
---|
149 | /* These are the amounts to shift an input value to get a histogram index. */
|
---|
150 | #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
|
---|
151 | #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
|
---|
152 | #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
|
---|
153 |
|
---|
154 |
|
---|
155 | typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
|
---|
156 |
|
---|
157 | typedef histcell FAR * histptr; /* for pointers to histogram cells */
|
---|
158 |
|
---|
159 | typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
|
---|
160 | typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */
|
---|
161 | typedef hist2d * hist3d; /* type for top-level pointer */
|
---|
162 |
|
---|
163 |
|
---|
164 | /* Declarations for Floyd-Steinberg dithering.
|
---|
165 | *
|
---|
166 | * Errors are accumulated into the array fserrors[], at a resolution of
|
---|
167 | * 1/16th of a pixel count. The error at a given pixel is propagated
|
---|
168 | * to its not-yet-processed neighbors using the standard F-S fractions,
|
---|
169 | * ... (here) 7/16
|
---|
170 | * 3/16 5/16 1/16
|
---|
171 | * We work left-to-right on even rows, right-to-left on odd rows.
|
---|
172 | *
|
---|
173 | * We can get away with a single array (holding one row's worth of errors)
|
---|
174 | * by using it to store the current row's errors at pixel columns not yet
|
---|
175 | * processed, but the next row's errors at columns already processed. We
|
---|
176 | * need only a few extra variables to hold the errors immediately around the
|
---|
177 | * current column. (If we are lucky, those variables are in registers, but
|
---|
178 | * even if not, they're probably cheaper to access than array elements are.)
|
---|
179 | *
|
---|
180 | * The fserrors[] array has (#columns + 2) entries; the extra entry at
|
---|
181 | * each end saves us from special-casing the first and last pixels.
|
---|
182 | * Each entry is three values long, one value for each color component.
|
---|
183 | *
|
---|
184 | * Note: on a wide image, we might not have enough room in a PC's near data
|
---|
185 | * segment to hold the error array; so it is allocated with alloc_large.
|
---|
186 | */
|
---|
187 |
|
---|
188 | #if BITS_IN_JSAMPLE == 8
|
---|
189 | typedef INT16 FSERROR; /* 16 bits should be enough */
|
---|
190 | typedef int LOCFSERROR; /* use 'int' for calculation temps */
|
---|
191 | #else
|
---|
192 | typedef INT32 FSERROR; /* may need more than 16 bits */
|
---|
193 | typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
|
---|
194 | #endif
|
---|
195 |
|
---|
196 | typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
|
---|
197 |
|
---|
198 |
|
---|
199 | /* Private subobject */
|
---|
200 |
|
---|
201 | typedef struct {
|
---|
202 | struct jpeg_color_quantizer pub; /* public fields */
|
---|
203 |
|
---|
204 | /* Space for the eventually created colormap is stashed here */
|
---|
205 | JSAMPARRAY sv_colormap; /* colormap allocated at init time */
|
---|
206 | int desired; /* desired # of colors = size of colormap */
|
---|
207 |
|
---|
208 | /* Variables for accumulating image statistics */
|
---|
209 | hist3d histogram; /* pointer to the histogram */
|
---|
210 |
|
---|
211 | boolean needs_zeroed; /* TRUE if next pass must zero histogram */
|
---|
212 |
|
---|
213 | /* Variables for Floyd-Steinberg dithering */
|
---|
214 | FSERRPTR fserrors; /* accumulated errors */
|
---|
215 | boolean on_odd_row; /* flag to remember which row we are on */
|
---|
216 | int * error_limiter; /* table for clamping the applied error */
|
---|
217 | } my_cquantizer;
|
---|
218 |
|
---|
219 | typedef my_cquantizer * my_cquantize_ptr;
|
---|
220 |
|
---|
221 |
|
---|
222 | /*
|
---|
223 | * Prescan some rows of pixels.
|
---|
224 | * In this module the prescan simply updates the histogram, which has been
|
---|
225 | * initialized to zeroes by start_pass.
|
---|
226 | * An output_buf parameter is required by the method signature, but no data
|
---|
227 | * is actually output (in fact the buffer controller is probably passing a
|
---|
228 | * NULL pointer).
|
---|
229 | */
|
---|
230 |
|
---|
231 | METHODDEF(void)
|
---|
232 | prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
|
---|
233 | JSAMPARRAY output_buf, int num_rows)
|
---|
234 | {
|
---|
235 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
236 | register JSAMPROW ptr;
|
---|
237 | register histptr histp;
|
---|
238 | register hist3d histogram = cquantize->histogram;
|
---|
239 | int row;
|
---|
240 | JDIMENSION col;
|
---|
241 | JDIMENSION width = cinfo->output_width;
|
---|
242 |
|
---|
243 | for (row = 0; row < num_rows; row++) {
|
---|
244 | ptr = input_buf[row];
|
---|
245 | for (col = width; col > 0; col--) {
|
---|
246 | /* get pixel value and index into the histogram */
|
---|
247 | histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
|
---|
248 | [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
|
---|
249 | [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
|
---|
250 | /* increment, check for overflow and undo increment if so. */
|
---|
251 | if (++(*histp) <= 0)
|
---|
252 | (*histp)--;
|
---|
253 | ptr += 3;
|
---|
254 | }
|
---|
255 | }
|
---|
256 | }
|
---|
257 |
|
---|
258 |
|
---|
259 | /*
|
---|
260 | * Next we have the really interesting routines: selection of a colormap
|
---|
261 | * given the completed histogram.
|
---|
262 | * These routines work with a list of "boxes", each representing a rectangular
|
---|
263 | * subset of the input color space (to histogram precision).
|
---|
264 | */
|
---|
265 |
|
---|
266 | typedef struct {
|
---|
267 | /* The bounds of the box (inclusive); expressed as histogram indexes */
|
---|
268 | int c0min, c0max;
|
---|
269 | int c1min, c1max;
|
---|
270 | int c2min, c2max;
|
---|
271 | /* The volume (actually 2-norm) of the box */
|
---|
272 | INT32 volume;
|
---|
273 | /* The number of nonzero histogram cells within this box */
|
---|
274 | long colorcount;
|
---|
275 | } box;
|
---|
276 |
|
---|
277 | typedef box * boxptr;
|
---|
278 |
|
---|
279 |
|
---|
280 | LOCAL(boxptr)
|
---|
281 | find_biggest_color_pop (boxptr boxlist, int numboxes)
|
---|
282 | /* Find the splittable box with the largest color population */
|
---|
283 | /* Returns NULL if no splittable boxes remain */
|
---|
284 | {
|
---|
285 | register boxptr boxp;
|
---|
286 | register int i;
|
---|
287 | register long maxc = 0;
|
---|
288 | boxptr which = NULL;
|
---|
289 |
|
---|
290 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
|
---|
291 | if (boxp->colorcount > maxc && boxp->volume > 0) {
|
---|
292 | which = boxp;
|
---|
293 | maxc = boxp->colorcount;
|
---|
294 | }
|
---|
295 | }
|
---|
296 | return which;
|
---|
297 | }
|
---|
298 |
|
---|
299 |
|
---|
300 | LOCAL(boxptr)
|
---|
301 | find_biggest_volume (boxptr boxlist, int numboxes)
|
---|
302 | /* Find the splittable box with the largest (scaled) volume */
|
---|
303 | /* Returns NULL if no splittable boxes remain */
|
---|
304 | {
|
---|
305 | register boxptr boxp;
|
---|
306 | register int i;
|
---|
307 | register INT32 maxv = 0;
|
---|
308 | boxptr which = NULL;
|
---|
309 |
|
---|
310 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
|
---|
311 | if (boxp->volume > maxv) {
|
---|
312 | which = boxp;
|
---|
313 | maxv = boxp->volume;
|
---|
314 | }
|
---|
315 | }
|
---|
316 | return which;
|
---|
317 | }
|
---|
318 |
|
---|
319 |
|
---|
320 | LOCAL(void)
|
---|
321 | update_box (j_decompress_ptr cinfo, boxptr boxp)
|
---|
322 | /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
|
---|
323 | /* and recompute its volume and population */
|
---|
324 | {
|
---|
325 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
326 | hist3d histogram = cquantize->histogram;
|
---|
327 | histptr histp;
|
---|
328 | int c0,c1,c2;
|
---|
329 | int c0min,c0max,c1min,c1max,c2min,c2max;
|
---|
330 | INT32 dist0,dist1,dist2;
|
---|
331 | long ccount;
|
---|
332 |
|
---|
333 | c0min = boxp->c0min; c0max = boxp->c0max;
|
---|
334 | c1min = boxp->c1min; c1max = boxp->c1max;
|
---|
335 | c2min = boxp->c2min; c2max = boxp->c2max;
|
---|
336 |
|
---|
337 | if (c0max > c0min)
|
---|
338 | for (c0 = c0min; c0 <= c0max; c0++)
|
---|
339 | for (c1 = c1min; c1 <= c1max; c1++) {
|
---|
340 | histp = & histogram[c0][c1][c2min];
|
---|
341 | for (c2 = c2min; c2 <= c2max; c2++)
|
---|
342 | if (*histp++ != 0) {
|
---|
343 | boxp->c0min = c0min = c0;
|
---|
344 | goto have_c0min;
|
---|
345 | }
|
---|
346 | }
|
---|
347 | have_c0min:
|
---|
348 | if (c0max > c0min)
|
---|
349 | for (c0 = c0max; c0 >= c0min; c0--)
|
---|
350 | for (c1 = c1min; c1 <= c1max; c1++) {
|
---|
351 | histp = & histogram[c0][c1][c2min];
|
---|
352 | for (c2 = c2min; c2 <= c2max; c2++)
|
---|
353 | if (*histp++ != 0) {
|
---|
354 | boxp->c0max = c0max = c0;
|
---|
355 | goto have_c0max;
|
---|
356 | }
|
---|
357 | }
|
---|
358 | have_c0max:
|
---|
359 | if (c1max > c1min)
|
---|
360 | for (c1 = c1min; c1 <= c1max; c1++)
|
---|
361 | for (c0 = c0min; c0 <= c0max; c0++) {
|
---|
362 | histp = & histogram[c0][c1][c2min];
|
---|
363 | for (c2 = c2min; c2 <= c2max; c2++)
|
---|
364 | if (*histp++ != 0) {
|
---|
365 | boxp->c1min = c1min = c1;
|
---|
366 | goto have_c1min;
|
---|
367 | }
|
---|
368 | }
|
---|
369 | have_c1min:
|
---|
370 | if (c1max > c1min)
|
---|
371 | for (c1 = c1max; c1 >= c1min; c1--)
|
---|
372 | for (c0 = c0min; c0 <= c0max; c0++) {
|
---|
373 | histp = & histogram[c0][c1][c2min];
|
---|
374 | for (c2 = c2min; c2 <= c2max; c2++)
|
---|
375 | if (*histp++ != 0) {
|
---|
376 | boxp->c1max = c1max = c1;
|
---|
377 | goto have_c1max;
|
---|
378 | }
|
---|
379 | }
|
---|
380 | have_c1max:
|
---|
381 | if (c2max > c2min)
|
---|
382 | for (c2 = c2min; c2 <= c2max; c2++)
|
---|
383 | for (c0 = c0min; c0 <= c0max; c0++) {
|
---|
384 | histp = & histogram[c0][c1min][c2];
|
---|
385 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
|
---|
386 | if (*histp != 0) {
|
---|
387 | boxp->c2min = c2min = c2;
|
---|
388 | goto have_c2min;
|
---|
389 | }
|
---|
390 | }
|
---|
391 | have_c2min:
|
---|
392 | if (c2max > c2min)
|
---|
393 | for (c2 = c2max; c2 >= c2min; c2--)
|
---|
394 | for (c0 = c0min; c0 <= c0max; c0++) {
|
---|
395 | histp = & histogram[c0][c1min][c2];
|
---|
396 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
|
---|
397 | if (*histp != 0) {
|
---|
398 | boxp->c2max = c2max = c2;
|
---|
399 | goto have_c2max;
|
---|
400 | }
|
---|
401 | }
|
---|
402 | have_c2max:
|
---|
403 |
|
---|
404 | /* Update box volume.
|
---|
405 | * We use 2-norm rather than real volume here; this biases the method
|
---|
406 | * against making long narrow boxes, and it has the side benefit that
|
---|
407 | * a box is splittable iff norm > 0.
|
---|
408 | * Since the differences are expressed in histogram-cell units,
|
---|
409 | * we have to shift back to JSAMPLE units to get consistent distances;
|
---|
410 | * after which, we scale according to the selected distance scale factors.
|
---|
411 | */
|
---|
412 | dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
|
---|
413 | dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
|
---|
414 | dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
|
---|
415 | boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
|
---|
416 |
|
---|
417 | /* Now scan remaining volume of box and compute population */
|
---|
418 | ccount = 0;
|
---|
419 | for (c0 = c0min; c0 <= c0max; c0++)
|
---|
420 | for (c1 = c1min; c1 <= c1max; c1++) {
|
---|
421 | histp = & histogram[c0][c1][c2min];
|
---|
422 | for (c2 = c2min; c2 <= c2max; c2++, histp++)
|
---|
423 | if (*histp != 0) {
|
---|
424 | ccount++;
|
---|
425 | }
|
---|
426 | }
|
---|
427 | boxp->colorcount = ccount;
|
---|
428 | }
|
---|
429 |
|
---|
430 |
|
---|
431 | LOCAL(int)
|
---|
432 | median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
|
---|
433 | int desired_colors)
|
---|
434 | /* Repeatedly select and split the largest box until we have enough boxes */
|
---|
435 | {
|
---|
436 | int n,lb;
|
---|
437 | int c0,c1,c2,cmax;
|
---|
438 | register boxptr b1,b2;
|
---|
439 |
|
---|
440 | while (numboxes < desired_colors) {
|
---|
441 | /* Select box to split.
|
---|
442 | * Current algorithm: by population for first half, then by volume.
|
---|
443 | */
|
---|
444 | if (numboxes*2 <= desired_colors) {
|
---|
445 | b1 = find_biggest_color_pop(boxlist, numboxes);
|
---|
446 | } else {
|
---|
447 | b1 = find_biggest_volume(boxlist, numboxes);
|
---|
448 | }
|
---|
449 | if (b1 == NULL) /* no splittable boxes left! */
|
---|
450 | break;
|
---|
451 | b2 = &boxlist[numboxes]; /* where new box will go */
|
---|
452 | /* Copy the color bounds to the new box. */
|
---|
453 | b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
|
---|
454 | b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
|
---|
455 | /* Choose which axis to split the box on.
|
---|
456 | * Current algorithm: longest scaled axis.
|
---|
457 | * See notes in update_box about scaling distances.
|
---|
458 | */
|
---|
459 | c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
|
---|
460 | c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
|
---|
461 | c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
|
---|
462 | /* We want to break any ties in favor of green, then red, blue last.
|
---|
463 | * This code does the right thing for R,G,B or B,G,R color orders only.
|
---|
464 | */
|
---|
465 | #if RGB_RED == 0
|
---|
466 | cmax = c1; n = 1;
|
---|
467 | if (c0 > cmax) { cmax = c0; n = 0; }
|
---|
468 | if (c2 > cmax) { n = 2; }
|
---|
469 | #else
|
---|
470 | cmax = c1; n = 1;
|
---|
471 | if (c2 > cmax) { cmax = c2; n = 2; }
|
---|
472 | if (c0 > cmax) { n = 0; }
|
---|
473 | #endif
|
---|
474 | /* Choose split point along selected axis, and update box bounds.
|
---|
475 | * Current algorithm: split at halfway point.
|
---|
476 | * (Since the box has been shrunk to minimum volume,
|
---|
477 | * any split will produce two nonempty subboxes.)
|
---|
478 | * Note that lb value is max for lower box, so must be < old max.
|
---|
479 | */
|
---|
480 | switch (n) {
|
---|
481 | case 0:
|
---|
482 | lb = (b1->c0max + b1->c0min) / 2;
|
---|
483 | b1->c0max = lb;
|
---|
484 | b2->c0min = lb+1;
|
---|
485 | break;
|
---|
486 | case 1:
|
---|
487 | lb = (b1->c1max + b1->c1min) / 2;
|
---|
488 | b1->c1max = lb;
|
---|
489 | b2->c1min = lb+1;
|
---|
490 | break;
|
---|
491 | case 2:
|
---|
492 | lb = (b1->c2max + b1->c2min) / 2;
|
---|
493 | b1->c2max = lb;
|
---|
494 | b2->c2min = lb+1;
|
---|
495 | break;
|
---|
496 | }
|
---|
497 | /* Update stats for boxes */
|
---|
498 | update_box(cinfo, b1);
|
---|
499 | update_box(cinfo, b2);
|
---|
500 | numboxes++;
|
---|
501 | }
|
---|
502 | return numboxes;
|
---|
503 | }
|
---|
504 |
|
---|
505 |
|
---|
506 | LOCAL(void)
|
---|
507 | compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
|
---|
508 | /* Compute representative color for a box, put it in colormap[icolor] */
|
---|
509 | {
|
---|
510 | /* Current algorithm: mean weighted by pixels (not colors) */
|
---|
511 | /* Note it is important to get the rounding correct! */
|
---|
512 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
513 | hist3d histogram = cquantize->histogram;
|
---|
514 | histptr histp;
|
---|
515 | int c0,c1,c2;
|
---|
516 | int c0min,c0max,c1min,c1max,c2min,c2max;
|
---|
517 | long count;
|
---|
518 | long total = 0;
|
---|
519 | long c0total = 0;
|
---|
520 | long c1total = 0;
|
---|
521 | long c2total = 0;
|
---|
522 |
|
---|
523 | c0min = boxp->c0min; c0max = boxp->c0max;
|
---|
524 | c1min = boxp->c1min; c1max = boxp->c1max;
|
---|
525 | c2min = boxp->c2min; c2max = boxp->c2max;
|
---|
526 |
|
---|
527 | for (c0 = c0min; c0 <= c0max; c0++)
|
---|
528 | for (c1 = c1min; c1 <= c1max; c1++) {
|
---|
529 | histp = & histogram[c0][c1][c2min];
|
---|
530 | for (c2 = c2min; c2 <= c2max; c2++) {
|
---|
531 | if ((count = *histp++) != 0) {
|
---|
532 | total += count;
|
---|
533 | c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
|
---|
534 | c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
|
---|
535 | c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
|
---|
536 | }
|
---|
537 | }
|
---|
538 | }
|
---|
539 |
|
---|
540 | cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
|
---|
541 | cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
|
---|
542 | cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
|
---|
543 | }
|
---|
544 |
|
---|
545 |
|
---|
546 | LOCAL(void)
|
---|
547 | select_colors (j_decompress_ptr cinfo, int desired_colors)
|
---|
548 | /* Master routine for color selection */
|
---|
549 | {
|
---|
550 | boxptr boxlist;
|
---|
551 | int numboxes;
|
---|
552 | int i;
|
---|
553 |
|
---|
554 | /* Allocate workspace for box list */
|
---|
555 | boxlist = (boxptr) (*cinfo->mem->alloc_small)
|
---|
556 | ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
|
---|
557 | /* Initialize one box containing whole space */
|
---|
558 | numboxes = 1;
|
---|
559 | boxlist[0].c0min = 0;
|
---|
560 | boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
|
---|
561 | boxlist[0].c1min = 0;
|
---|
562 | boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
|
---|
563 | boxlist[0].c2min = 0;
|
---|
564 | boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
|
---|
565 | /* Shrink it to actually-used volume and set its statistics */
|
---|
566 | update_box(cinfo, & boxlist[0]);
|
---|
567 | /* Perform median-cut to produce final box list */
|
---|
568 | numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
|
---|
569 | /* Compute the representative color for each box, fill colormap */
|
---|
570 | for (i = 0; i < numboxes; i++)
|
---|
571 | compute_color(cinfo, & boxlist[i], i);
|
---|
572 | cinfo->actual_number_of_colors = numboxes;
|
---|
573 | TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
|
---|
574 | }
|
---|
575 |
|
---|
576 |
|
---|
577 | /*
|
---|
578 | * These routines are concerned with the time-critical task of mapping input
|
---|
579 | * colors to the nearest color in the selected colormap.
|
---|
580 | *
|
---|
581 | * We re-use the histogram space as an "inverse color map", essentially a
|
---|
582 | * cache for the results of nearest-color searches. All colors within a
|
---|
583 | * histogram cell will be mapped to the same colormap entry, namely the one
|
---|
584 | * closest to the cell's center. This may not be quite the closest entry to
|
---|
585 | * the actual input color, but it's almost as good. A zero in the cache
|
---|
586 | * indicates we haven't found the nearest color for that cell yet; the array
|
---|
587 | * is cleared to zeroes before starting the mapping pass. When we find the
|
---|
588 | * nearest color for a cell, its colormap index plus one is recorded in the
|
---|
589 | * cache for future use. The pass2 scanning routines call fill_inverse_cmap
|
---|
590 | * when they need to use an unfilled entry in the cache.
|
---|
591 | *
|
---|
592 | * Our method of efficiently finding nearest colors is based on the "locally
|
---|
593 | * sorted search" idea described by Heckbert and on the incremental distance
|
---|
594 | * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
|
---|
595 | * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
|
---|
596 | * the distances from a given colormap entry to each cell of the histogram can
|
---|
597 | * be computed quickly using an incremental method: the differences between
|
---|
598 | * distances to adjacent cells themselves differ by a constant. This allows a
|
---|
599 | * fairly fast implementation of the "brute force" approach of computing the
|
---|
600 | * distance from every colormap entry to every histogram cell. Unfortunately,
|
---|
601 | * it needs a work array to hold the best-distance-so-far for each histogram
|
---|
602 | * cell (because the inner loop has to be over cells, not colormap entries).
|
---|
603 | * The work array elements have to be INT32s, so the work array would need
|
---|
604 | * 256Kb at our recommended precision. This is not feasible in DOS machines.
|
---|
605 | *
|
---|
606 | * To get around these problems, we apply Thomas' method to compute the
|
---|
607 | * nearest colors for only the cells within a small subbox of the histogram.
|
---|
608 | * The work array need be only as big as the subbox, so the memory usage
|
---|
609 | * problem is solved. Furthermore, we need not fill subboxes that are never
|
---|
610 | * referenced in pass2; many images use only part of the color gamut, so a
|
---|
611 | * fair amount of work is saved. An additional advantage of this
|
---|
612 | * approach is that we can apply Heckbert's locality criterion to quickly
|
---|
613 | * eliminate colormap entries that are far away from the subbox; typically
|
---|
614 | * three-fourths of the colormap entries are rejected by Heckbert's criterion,
|
---|
615 | * and we need not compute their distances to individual cells in the subbox.
|
---|
616 | * The speed of this approach is heavily influenced by the subbox size: too
|
---|
617 | * small means too much overhead, too big loses because Heckbert's criterion
|
---|
618 | * can't eliminate as many colormap entries. Empirically the best subbox
|
---|
619 | * size seems to be about 1/512th of the histogram (1/8th in each direction).
|
---|
620 | *
|
---|
621 | * Thomas' article also describes a refined method which is asymptotically
|
---|
622 | * faster than the brute-force method, but it is also far more complex and
|
---|
623 | * cannot efficiently be applied to small subboxes. It is therefore not
|
---|
624 | * useful for programs intended to be portable to DOS machines. On machines
|
---|
625 | * with plenty of memory, filling the whole histogram in one shot with Thomas'
|
---|
626 | * refined method might be faster than the present code --- but then again,
|
---|
627 | * it might not be any faster, and it's certainly more complicated.
|
---|
628 | */
|
---|
629 |
|
---|
630 |
|
---|
631 | /* log2(histogram cells in update box) for each axis; this can be adjusted */
|
---|
632 | #define BOX_C0_LOG (HIST_C0_BITS-3)
|
---|
633 | #define BOX_C1_LOG (HIST_C1_BITS-3)
|
---|
634 | #define BOX_C2_LOG (HIST_C2_BITS-3)
|
---|
635 |
|
---|
636 | #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
|
---|
637 | #define BOX_C1_ELEMS (1<<BOX_C1_LOG)
|
---|
638 | #define BOX_C2_ELEMS (1<<BOX_C2_LOG)
|
---|
639 |
|
---|
640 | #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
|
---|
641 | #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
|
---|
642 | #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
|
---|
643 |
|
---|
644 |
|
---|
645 | /*
|
---|
646 | * The next three routines implement inverse colormap filling. They could
|
---|
647 | * all be folded into one big routine, but splitting them up this way saves
|
---|
648 | * some stack space (the mindist[] and bestdist[] arrays need not coexist)
|
---|
649 | * and may allow some compilers to produce better code by registerizing more
|
---|
650 | * inner-loop variables.
|
---|
651 | */
|
---|
652 |
|
---|
653 | LOCAL(int)
|
---|
654 | find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
|
---|
655 | JSAMPLE colorlist[])
|
---|
656 | /* Locate the colormap entries close enough to an update box to be candidates
|
---|
657 | * for the nearest entry to some cell(s) in the update box. The update box
|
---|
658 | * is specified by the center coordinates of its first cell. The number of
|
---|
659 | * candidate colormap entries is returned, and their colormap indexes are
|
---|
660 | * placed in colorlist[].
|
---|
661 | * This routine uses Heckbert's "locally sorted search" criterion to select
|
---|
662 | * the colors that need further consideration.
|
---|
663 | */
|
---|
664 | {
|
---|
665 | int numcolors = cinfo->actual_number_of_colors;
|
---|
666 | int maxc0, maxc1, maxc2;
|
---|
667 | int centerc0, centerc1, centerc2;
|
---|
668 | int i, x, ncolors;
|
---|
669 | INT32 minmaxdist, min_dist, max_dist, tdist;
|
---|
670 | INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
|
---|
671 |
|
---|
672 | /* Compute true coordinates of update box's upper corner and center.
|
---|
673 | * Actually we compute the coordinates of the center of the upper-corner
|
---|
674 | * histogram cell, which are the upper bounds of the volume we care about.
|
---|
675 | * Note that since ">>" rounds down, the "center" values may be closer to
|
---|
676 | * min than to max; hence comparisons to them must be "<=", not "<".
|
---|
677 | */
|
---|
678 | maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
|
---|
679 | centerc0 = (minc0 + maxc0) >> 1;
|
---|
680 | maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
|
---|
681 | centerc1 = (minc1 + maxc1) >> 1;
|
---|
682 | maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
|
---|
683 | centerc2 = (minc2 + maxc2) >> 1;
|
---|
684 |
|
---|
685 | /* For each color in colormap, find:
|
---|
686 | * 1. its minimum squared-distance to any point in the update box
|
---|
687 | * (zero if color is within update box);
|
---|
688 | * 2. its maximum squared-distance to any point in the update box.
|
---|
689 | * Both of these can be found by considering only the corners of the box.
|
---|
690 | * We save the minimum distance for each color in mindist[];
|
---|
691 | * only the smallest maximum distance is of interest.
|
---|
692 | */
|
---|
693 | minmaxdist = 0x7FFFFFFFL;
|
---|
694 |
|
---|
695 | for (i = 0; i < numcolors; i++) {
|
---|
696 | /* We compute the squared-c0-distance term, then add in the other two. */
|
---|
697 | x = GETJSAMPLE(cinfo->colormap[0][i]);
|
---|
698 | if (x < minc0) {
|
---|
699 | tdist = (x - minc0) * C0_SCALE;
|
---|
700 | min_dist = tdist*tdist;
|
---|
701 | tdist = (x - maxc0) * C0_SCALE;
|
---|
702 | max_dist = tdist*tdist;
|
---|
703 | } else if (x > maxc0) {
|
---|
704 | tdist = (x - maxc0) * C0_SCALE;
|
---|
705 | min_dist = tdist*tdist;
|
---|
706 | tdist = (x - minc0) * C0_SCALE;
|
---|
707 | max_dist = tdist*tdist;
|
---|
708 | } else {
|
---|
709 | /* within cell range so no contribution to min_dist */
|
---|
710 | min_dist = 0;
|
---|
711 | if (x <= centerc0) {
|
---|
712 | tdist = (x - maxc0) * C0_SCALE;
|
---|
713 | max_dist = tdist*tdist;
|
---|
714 | } else {
|
---|
715 | tdist = (x - minc0) * C0_SCALE;
|
---|
716 | max_dist = tdist*tdist;
|
---|
717 | }
|
---|
718 | }
|
---|
719 |
|
---|
720 | x = GETJSAMPLE(cinfo->colormap[1][i]);
|
---|
721 | if (x < minc1) {
|
---|
722 | tdist = (x - minc1) * C1_SCALE;
|
---|
723 | min_dist += tdist*tdist;
|
---|
724 | tdist = (x - maxc1) * C1_SCALE;
|
---|
725 | max_dist += tdist*tdist;
|
---|
726 | } else if (x > maxc1) {
|
---|
727 | tdist = (x - maxc1) * C1_SCALE;
|
---|
728 | min_dist += tdist*tdist;
|
---|
729 | tdist = (x - minc1) * C1_SCALE;
|
---|
730 | max_dist += tdist*tdist;
|
---|
731 | } else {
|
---|
732 | /* within cell range so no contribution to min_dist */
|
---|
733 | if (x <= centerc1) {
|
---|
734 | tdist = (x - maxc1) * C1_SCALE;
|
---|
735 | max_dist += tdist*tdist;
|
---|
736 | } else {
|
---|
737 | tdist = (x - minc1) * C1_SCALE;
|
---|
738 | max_dist += tdist*tdist;
|
---|
739 | }
|
---|
740 | }
|
---|
741 |
|
---|
742 | x = GETJSAMPLE(cinfo->colormap[2][i]);
|
---|
743 | if (x < minc2) {
|
---|
744 | tdist = (x - minc2) * C2_SCALE;
|
---|
745 | min_dist += tdist*tdist;
|
---|
746 | tdist = (x - maxc2) * C2_SCALE;
|
---|
747 | max_dist += tdist*tdist;
|
---|
748 | } else if (x > maxc2) {
|
---|
749 | tdist = (x - maxc2) * C2_SCALE;
|
---|
750 | min_dist += tdist*tdist;
|
---|
751 | tdist = (x - minc2) * C2_SCALE;
|
---|
752 | max_dist += tdist*tdist;
|
---|
753 | } else {
|
---|
754 | /* within cell range so no contribution to min_dist */
|
---|
755 | if (x <= centerc2) {
|
---|
756 | tdist = (x - maxc2) * C2_SCALE;
|
---|
757 | max_dist += tdist*tdist;
|
---|
758 | } else {
|
---|
759 | tdist = (x - minc2) * C2_SCALE;
|
---|
760 | max_dist += tdist*tdist;
|
---|
761 | }
|
---|
762 | }
|
---|
763 |
|
---|
764 | mindist[i] = min_dist; /* save away the results */
|
---|
765 | if (max_dist < minmaxdist)
|
---|
766 | minmaxdist = max_dist;
|
---|
767 | }
|
---|
768 |
|
---|
769 | /* Now we know that no cell in the update box is more than minmaxdist
|
---|
770 | * away from some colormap entry. Therefore, only colors that are
|
---|
771 | * within minmaxdist of some part of the box need be considered.
|
---|
772 | */
|
---|
773 | ncolors = 0;
|
---|
774 | for (i = 0; i < numcolors; i++) {
|
---|
775 | if (mindist[i] <= minmaxdist)
|
---|
776 | colorlist[ncolors++] = (JSAMPLE) i;
|
---|
777 | }
|
---|
778 | return ncolors;
|
---|
779 | }
|
---|
780 |
|
---|
781 |
|
---|
782 | LOCAL(void)
|
---|
783 | find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
|
---|
784 | int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
|
---|
785 | /* Find the closest colormap entry for each cell in the update box,
|
---|
786 | * given the list of candidate colors prepared by find_nearby_colors.
|
---|
787 | * Return the indexes of the closest entries in the bestcolor[] array.
|
---|
788 | * This routine uses Thomas' incremental distance calculation method to
|
---|
789 | * find the distance from a colormap entry to successive cells in the box.
|
---|
790 | */
|
---|
791 | {
|
---|
792 | int ic0, ic1, ic2;
|
---|
793 | int i, icolor;
|
---|
794 | register INT32 * bptr; /* pointer into bestdist[] array */
|
---|
795 | JSAMPLE * cptr; /* pointer into bestcolor[] array */
|
---|
796 | INT32 dist0, dist1; /* initial distance values */
|
---|
797 | register INT32 dist2; /* current distance in inner loop */
|
---|
798 | INT32 xx0, xx1; /* distance increments */
|
---|
799 | register INT32 xx2;
|
---|
800 | INT32 inc0, inc1, inc2; /* initial values for increments */
|
---|
801 | /* This array holds the distance to the nearest-so-far color for each cell */
|
---|
802 | INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
|
---|
803 |
|
---|
804 | /* Initialize best-distance for each cell of the update box */
|
---|
805 | bptr = bestdist;
|
---|
806 | for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
|
---|
807 | *bptr++ = 0x7FFFFFFFL;
|
---|
808 |
|
---|
809 | /* For each color selected by find_nearby_colors,
|
---|
810 | * compute its distance to the center of each cell in the box.
|
---|
811 | * If that's less than best-so-far, update best distance and color number.
|
---|
812 | */
|
---|
813 |
|
---|
814 | /* Nominal steps between cell centers ("x" in Thomas article) */
|
---|
815 | #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
|
---|
816 | #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
|
---|
817 | #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
|
---|
818 |
|
---|
819 | for (i = 0; i < numcolors; i++) {
|
---|
820 | icolor = GETJSAMPLE(colorlist[i]);
|
---|
821 | /* Compute (square of) distance from minc0/c1/c2 to this color */
|
---|
822 | inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
|
---|
823 | dist0 = inc0*inc0;
|
---|
824 | inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
|
---|
825 | dist0 += inc1*inc1;
|
---|
826 | inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
|
---|
827 | dist0 += inc2*inc2;
|
---|
828 | /* Form the initial difference increments */
|
---|
829 | inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
|
---|
830 | inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
|
---|
831 | inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
|
---|
832 | /* Now loop over all cells in box, updating distance per Thomas method */
|
---|
833 | bptr = bestdist;
|
---|
834 | cptr = bestcolor;
|
---|
835 | xx0 = inc0;
|
---|
836 | for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
|
---|
837 | dist1 = dist0;
|
---|
838 | xx1 = inc1;
|
---|
839 | for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
|
---|
840 | dist2 = dist1;
|
---|
841 | xx2 = inc2;
|
---|
842 | for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
|
---|
843 | if (dist2 < *bptr) {
|
---|
844 | *bptr = dist2;
|
---|
845 | *cptr = (JSAMPLE) icolor;
|
---|
846 | }
|
---|
847 | dist2 += xx2;
|
---|
848 | xx2 += 2 * STEP_C2 * STEP_C2;
|
---|
849 | bptr++;
|
---|
850 | cptr++;
|
---|
851 | }
|
---|
852 | dist1 += xx1;
|
---|
853 | xx1 += 2 * STEP_C1 * STEP_C1;
|
---|
854 | }
|
---|
855 | dist0 += xx0;
|
---|
856 | xx0 += 2 * STEP_C0 * STEP_C0;
|
---|
857 | }
|
---|
858 | }
|
---|
859 | }
|
---|
860 |
|
---|
861 |
|
---|
862 | LOCAL(void)
|
---|
863 | fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
|
---|
864 | /* Fill the inverse-colormap entries in the update box that contains */
|
---|
865 | /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
|
---|
866 | /* we can fill as many others as we wish.) */
|
---|
867 | {
|
---|
868 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
869 | hist3d histogram = cquantize->histogram;
|
---|
870 | int minc0, minc1, minc2; /* lower left corner of update box */
|
---|
871 | int ic0, ic1, ic2;
|
---|
872 | register JSAMPLE * cptr; /* pointer into bestcolor[] array */
|
---|
873 | register histptr cachep; /* pointer into main cache array */
|
---|
874 | /* This array lists the candidate colormap indexes. */
|
---|
875 | JSAMPLE colorlist[MAXNUMCOLORS];
|
---|
876 | int numcolors; /* number of candidate colors */
|
---|
877 | /* This array holds the actually closest colormap index for each cell. */
|
---|
878 | JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
|
---|
879 |
|
---|
880 | /* Convert cell coordinates to update box ID */
|
---|
881 | c0 >>= BOX_C0_LOG;
|
---|
882 | c1 >>= BOX_C1_LOG;
|
---|
883 | c2 >>= BOX_C2_LOG;
|
---|
884 |
|
---|
885 | /* Compute true coordinates of update box's origin corner.
|
---|
886 | * Actually we compute the coordinates of the center of the corner
|
---|
887 | * histogram cell, which are the lower bounds of the volume we care about.
|
---|
888 | */
|
---|
889 | minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
|
---|
890 | minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
|
---|
891 | minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
|
---|
892 |
|
---|
893 | /* Determine which colormap entries are close enough to be candidates
|
---|
894 | * for the nearest entry to some cell in the update box.
|
---|
895 | */
|
---|
896 | numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
|
---|
897 |
|
---|
898 | /* Determine the actually nearest colors. */
|
---|
899 | find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
|
---|
900 | bestcolor);
|
---|
901 |
|
---|
902 | /* Save the best color numbers (plus 1) in the main cache array */
|
---|
903 | c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
|
---|
904 | c1 <<= BOX_C1_LOG;
|
---|
905 | c2 <<= BOX_C2_LOG;
|
---|
906 | cptr = bestcolor;
|
---|
907 | for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
|
---|
908 | for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
|
---|
909 | cachep = & histogram[c0+ic0][c1+ic1][c2];
|
---|
910 | for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
|
---|
911 | *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
|
---|
912 | }
|
---|
913 | }
|
---|
914 | }
|
---|
915 | }
|
---|
916 |
|
---|
917 |
|
---|
918 | /*
|
---|
919 | * Map some rows of pixels to the output colormapped representation.
|
---|
920 | */
|
---|
921 |
|
---|
922 | METHODDEF(void)
|
---|
923 | pass2_no_dither (j_decompress_ptr cinfo,
|
---|
924 | JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
|
---|
925 | /* This version performs no dithering */
|
---|
926 | {
|
---|
927 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
928 | hist3d histogram = cquantize->histogram;
|
---|
929 | register JSAMPROW inptr, outptr;
|
---|
930 | register histptr cachep;
|
---|
931 | register int c0, c1, c2;
|
---|
932 | int row;
|
---|
933 | JDIMENSION col;
|
---|
934 | JDIMENSION width = cinfo->output_width;
|
---|
935 |
|
---|
936 | for (row = 0; row < num_rows; row++) {
|
---|
937 | inptr = input_buf[row];
|
---|
938 | outptr = output_buf[row];
|
---|
939 | for (col = width; col > 0; col--) {
|
---|
940 | /* get pixel value and index into the cache */
|
---|
941 | c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
|
---|
942 | c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
|
---|
943 | c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
|
---|
944 | cachep = & histogram[c0][c1][c2];
|
---|
945 | /* If we have not seen this color before, find nearest colormap entry */
|
---|
946 | /* and update the cache */
|
---|
947 | if (*cachep == 0)
|
---|
948 | fill_inverse_cmap(cinfo, c0,c1,c2);
|
---|
949 | /* Now emit the colormap index for this cell */
|
---|
950 | *outptr++ = (JSAMPLE) (*cachep - 1);
|
---|
951 | }
|
---|
952 | }
|
---|
953 | }
|
---|
954 |
|
---|
955 |
|
---|
956 | METHODDEF(void)
|
---|
957 | pass2_fs_dither (j_decompress_ptr cinfo,
|
---|
958 | JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
|
---|
959 | /* This version performs Floyd-Steinberg dithering */
|
---|
960 | {
|
---|
961 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
962 | hist3d histogram = cquantize->histogram;
|
---|
963 | register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
|
---|
964 | LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
|
---|
965 | LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
|
---|
966 | register FSERRPTR errorptr; /* => fserrors[] at column before current */
|
---|
967 | JSAMPROW inptr; /* => current input pixel */
|
---|
968 | JSAMPROW outptr; /* => current output pixel */
|
---|
969 | histptr cachep;
|
---|
970 | int dir; /* +1 or -1 depending on direction */
|
---|
971 | int dir3; /* 3*dir, for advancing inptr & errorptr */
|
---|
972 | int row;
|
---|
973 | JDIMENSION col;
|
---|
974 | JDIMENSION width = cinfo->output_width;
|
---|
975 | JSAMPLE *range_limit = cinfo->sample_range_limit;
|
---|
976 | int *error_limit = cquantize->error_limiter;
|
---|
977 | JSAMPROW colormap0 = cinfo->colormap[0];
|
---|
978 | JSAMPROW colormap1 = cinfo->colormap[1];
|
---|
979 | JSAMPROW colormap2 = cinfo->colormap[2];
|
---|
980 | SHIFT_TEMPS
|
---|
981 |
|
---|
982 | for (row = 0; row < num_rows; row++) {
|
---|
983 | inptr = input_buf[row];
|
---|
984 | outptr = output_buf[row];
|
---|
985 | if (cquantize->on_odd_row) {
|
---|
986 | /* work right to left in this row */
|
---|
987 | inptr += (width-1) * 3; /* so point to rightmost pixel */
|
---|
988 | outptr += width-1;
|
---|
989 | dir = -1;
|
---|
990 | dir3 = -3;
|
---|
991 | errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
|
---|
992 | cquantize->on_odd_row = FALSE; /* flip for next time */
|
---|
993 | } else {
|
---|
994 | /* work left to right in this row */
|
---|
995 | dir = 1;
|
---|
996 | dir3 = 3;
|
---|
997 | errorptr = cquantize->fserrors; /* => entry before first real column */
|
---|
998 | cquantize->on_odd_row = TRUE; /* flip for next time */
|
---|
999 | }
|
---|
1000 | /* Preset error values: no error propagated to first pixel from left */
|
---|
1001 | cur0 = cur1 = cur2 = 0;
|
---|
1002 | /* and no error propagated to row below yet */
|
---|
1003 | belowerr0 = belowerr1 = belowerr2 = 0;
|
---|
1004 | bpreverr0 = bpreverr1 = bpreverr2 = 0;
|
---|
1005 |
|
---|
1006 | for (col = width; col > 0; col--) {
|
---|
1007 | /* curN holds the error propagated from the previous pixel on the
|
---|
1008 | * current line. Add the error propagated from the previous line
|
---|
1009 | * to form the complete error correction term for this pixel, and
|
---|
1010 | * round the error term (which is expressed * 16) to an integer.
|
---|
1011 | * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
|
---|
1012 | * for either sign of the error value.
|
---|
1013 | * Note: errorptr points to *previous* column's array entry.
|
---|
1014 | */
|
---|
1015 | cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
|
---|
1016 | cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
|
---|
1017 | cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
|
---|
1018 | /* Limit the error using transfer function set by init_error_limit.
|
---|
1019 | * See comments with init_error_limit for rationale.
|
---|
1020 | */
|
---|
1021 | cur0 = error_limit[cur0];
|
---|
1022 | cur1 = error_limit[cur1];
|
---|
1023 | cur2 = error_limit[cur2];
|
---|
1024 | /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
|
---|
1025 | * The maximum error is +- MAXJSAMPLE (or less with error limiting);
|
---|
1026 | * this sets the required size of the range_limit array.
|
---|
1027 | */
|
---|
1028 | cur0 += GETJSAMPLE(inptr[0]);
|
---|
1029 | cur1 += GETJSAMPLE(inptr[1]);
|
---|
1030 | cur2 += GETJSAMPLE(inptr[2]);
|
---|
1031 | cur0 = GETJSAMPLE(range_limit[cur0]);
|
---|
1032 | cur1 = GETJSAMPLE(range_limit[cur1]);
|
---|
1033 | cur2 = GETJSAMPLE(range_limit[cur2]);
|
---|
1034 | /* Index into the cache with adjusted pixel value */
|
---|
1035 | cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
|
---|
1036 | /* If we have not seen this color before, find nearest colormap */
|
---|
1037 | /* entry and update the cache */
|
---|
1038 | if (*cachep == 0)
|
---|
1039 | fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
|
---|
1040 | /* Now emit the colormap index for this cell */
|
---|
1041 | { register int pixcode = *cachep - 1;
|
---|
1042 | *outptr = (JSAMPLE) pixcode;
|
---|
1043 | /* Compute representation error for this pixel */
|
---|
1044 | cur0 -= GETJSAMPLE(colormap0[pixcode]);
|
---|
1045 | cur1 -= GETJSAMPLE(colormap1[pixcode]);
|
---|
1046 | cur2 -= GETJSAMPLE(colormap2[pixcode]);
|
---|
1047 | }
|
---|
1048 | /* Compute error fractions to be propagated to adjacent pixels.
|
---|
1049 | * Add these into the running sums, and simultaneously shift the
|
---|
1050 | * next-line error sums left by 1 column.
|
---|
1051 | */
|
---|
1052 | { register LOCFSERROR bnexterr, delta;
|
---|
1053 |
|
---|
1054 | bnexterr = cur0; /* Process component 0 */
|
---|
1055 | delta = cur0 * 2;
|
---|
1056 | cur0 += delta; /* form error * 3 */
|
---|
1057 | errorptr[0] = (FSERROR) (bpreverr0 + cur0);
|
---|
1058 | cur0 += delta; /* form error * 5 */
|
---|
1059 | bpreverr0 = belowerr0 + cur0;
|
---|
1060 | belowerr0 = bnexterr;
|
---|
1061 | cur0 += delta; /* form error * 7 */
|
---|
1062 | bnexterr = cur1; /* Process component 1 */
|
---|
1063 | delta = cur1 * 2;
|
---|
1064 | cur1 += delta; /* form error * 3 */
|
---|
1065 | errorptr[1] = (FSERROR) (bpreverr1 + cur1);
|
---|
1066 | cur1 += delta; /* form error * 5 */
|
---|
1067 | bpreverr1 = belowerr1 + cur1;
|
---|
1068 | belowerr1 = bnexterr;
|
---|
1069 | cur1 += delta; /* form error * 7 */
|
---|
1070 | bnexterr = cur2; /* Process component 2 */
|
---|
1071 | delta = cur2 * 2;
|
---|
1072 | cur2 += delta; /* form error * 3 */
|
---|
1073 | errorptr[2] = (FSERROR) (bpreverr2 + cur2);
|
---|
1074 | cur2 += delta; /* form error * 5 */
|
---|
1075 | bpreverr2 = belowerr2 + cur2;
|
---|
1076 | belowerr2 = bnexterr;
|
---|
1077 | cur2 += delta; /* form error * 7 */
|
---|
1078 | }
|
---|
1079 | /* At this point curN contains the 7/16 error value to be propagated
|
---|
1080 | * to the next pixel on the current line, and all the errors for the
|
---|
1081 | * next line have been shifted over. We are therefore ready to move on.
|
---|
1082 | */
|
---|
1083 | inptr += dir3; /* Advance pixel pointers to next column */
|
---|
1084 | outptr += dir;
|
---|
1085 | errorptr += dir3; /* advance errorptr to current column */
|
---|
1086 | }
|
---|
1087 | /* Post-loop cleanup: we must unload the final error values into the
|
---|
1088 | * final fserrors[] entry. Note we need not unload belowerrN because
|
---|
1089 | * it is for the dummy column before or after the actual array.
|
---|
1090 | */
|
---|
1091 | errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
|
---|
1092 | errorptr[1] = (FSERROR) bpreverr1;
|
---|
1093 | errorptr[2] = (FSERROR) bpreverr2;
|
---|
1094 | }
|
---|
1095 | }
|
---|
1096 |
|
---|
1097 |
|
---|
1098 | /*
|
---|
1099 | * Initialize the error-limiting transfer function (lookup table).
|
---|
1100 | * The raw F-S error computation can potentially compute error values of up to
|
---|
1101 | * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
|
---|
1102 | * much less, otherwise obviously wrong pixels will be created. (Typical
|
---|
1103 | * effects include weird fringes at color-area boundaries, isolated bright
|
---|
1104 | * pixels in a dark area, etc.) The standard advice for avoiding this problem
|
---|
1105 | * is to ensure that the "corners" of the color cube are allocated as output
|
---|
1106 | * colors; then repeated errors in the same direction cannot cause cascading
|
---|
1107 | * error buildup. However, that only prevents the error from getting
|
---|
1108 | * completely out of hand; Aaron Giles reports that error limiting improves
|
---|
1109 | * the results even with corner colors allocated.
|
---|
1110 | * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
|
---|
1111 | * well, but the smoother transfer function used below is even better. Thanks
|
---|
1112 | * to Aaron Giles for this idea.
|
---|
1113 | */
|
---|
1114 |
|
---|
1115 | LOCAL(void)
|
---|
1116 | init_error_limit (j_decompress_ptr cinfo)
|
---|
1117 | /* Allocate and fill in the error_limiter table */
|
---|
1118 | {
|
---|
1119 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
1120 | int * table;
|
---|
1121 | int in, out;
|
---|
1122 |
|
---|
1123 | table = (int *) (*cinfo->mem->alloc_small)
|
---|
1124 | ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
|
---|
1125 | table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
|
---|
1126 | cquantize->error_limiter = table;
|
---|
1127 |
|
---|
1128 | #define STEPSIZE ((MAXJSAMPLE+1)/16)
|
---|
1129 | /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
|
---|
1130 | out = 0;
|
---|
1131 | for (in = 0; in < STEPSIZE; in++, out++) {
|
---|
1132 | table[in] = out; table[-in] = -out;
|
---|
1133 | }
|
---|
1134 | /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
|
---|
1135 | for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
|
---|
1136 | table[in] = out; table[-in] = -out;
|
---|
1137 | }
|
---|
1138 | /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
|
---|
1139 | for (; in <= MAXJSAMPLE; in++) {
|
---|
1140 | table[in] = out; table[-in] = -out;
|
---|
1141 | }
|
---|
1142 | #undef STEPSIZE
|
---|
1143 | }
|
---|
1144 |
|
---|
1145 |
|
---|
1146 | /*
|
---|
1147 | * Finish up at the end of each pass.
|
---|
1148 | */
|
---|
1149 |
|
---|
1150 | METHODDEF(void)
|
---|
1151 | finish_pass1 (j_decompress_ptr cinfo)
|
---|
1152 | {
|
---|
1153 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
1154 |
|
---|
1155 | /* Select the representative colors and fill in cinfo->colormap */
|
---|
1156 | cinfo->colormap = cquantize->sv_colormap;
|
---|
1157 | select_colors(cinfo, cquantize->desired);
|
---|
1158 | /* Force next pass to zero the color index table */
|
---|
1159 | cquantize->needs_zeroed = TRUE;
|
---|
1160 | }
|
---|
1161 |
|
---|
1162 |
|
---|
1163 | METHODDEF(void)
|
---|
1164 | finish_pass2 (j_decompress_ptr cinfo)
|
---|
1165 | {
|
---|
1166 | /* no work */
|
---|
1167 | }
|
---|
1168 |
|
---|
1169 |
|
---|
1170 | /*
|
---|
1171 | * Initialize for each processing pass.
|
---|
1172 | */
|
---|
1173 |
|
---|
1174 | METHODDEF(void)
|
---|
1175 | start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
|
---|
1176 | {
|
---|
1177 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
1178 | hist3d histogram = cquantize->histogram;
|
---|
1179 | int i;
|
---|
1180 |
|
---|
1181 | /* Only F-S dithering or no dithering is supported. */
|
---|
1182 | /* If user asks for ordered dither, give him F-S. */
|
---|
1183 | if (cinfo->dither_mode != JDITHER_NONE)
|
---|
1184 | cinfo->dither_mode = JDITHER_FS;
|
---|
1185 |
|
---|
1186 | if (is_pre_scan) {
|
---|
1187 | /* Set up method pointers */
|
---|
1188 | cquantize->pub.color_quantize = prescan_quantize;
|
---|
1189 | cquantize->pub.finish_pass = finish_pass1;
|
---|
1190 | cquantize->needs_zeroed = TRUE; /* Always zero histogram */
|
---|
1191 | } else {
|
---|
1192 | /* Set up method pointers */
|
---|
1193 | if (cinfo->dither_mode == JDITHER_FS)
|
---|
1194 | cquantize->pub.color_quantize = pass2_fs_dither;
|
---|
1195 | else
|
---|
1196 | cquantize->pub.color_quantize = pass2_no_dither;
|
---|
1197 | cquantize->pub.finish_pass = finish_pass2;
|
---|
1198 |
|
---|
1199 | /* Make sure color count is acceptable */
|
---|
1200 | i = cinfo->actual_number_of_colors;
|
---|
1201 | if (i < 1)
|
---|
1202 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
|
---|
1203 | if (i > MAXNUMCOLORS)
|
---|
1204 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
|
---|
1205 |
|
---|
1206 | if (cinfo->dither_mode == JDITHER_FS) {
|
---|
1207 | size_t arraysize = (size_t) ((cinfo->output_width + 2) *
|
---|
1208 | (3 * SIZEOF(FSERROR)));
|
---|
1209 | /* Allocate Floyd-Steinberg workspace if we didn't already. */
|
---|
1210 | if (cquantize->fserrors == NULL)
|
---|
1211 | cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
|
---|
1212 | ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
|
---|
1213 | /* Initialize the propagated errors to zero. */
|
---|
1214 | jzero_far((void FAR *) cquantize->fserrors, arraysize);
|
---|
1215 | /* Make the error-limit table if we didn't already. */
|
---|
1216 | if (cquantize->error_limiter == NULL)
|
---|
1217 | init_error_limit(cinfo);
|
---|
1218 | cquantize->on_odd_row = FALSE;
|
---|
1219 | }
|
---|
1220 |
|
---|
1221 | }
|
---|
1222 | /* Zero the histogram or inverse color map, if necessary */
|
---|
1223 | if (cquantize->needs_zeroed) {
|
---|
1224 | for (i = 0; i < HIST_C0_ELEMS; i++) {
|
---|
1225 | jzero_far((void FAR *) histogram[i],
|
---|
1226 | HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
|
---|
1227 | }
|
---|
1228 | cquantize->needs_zeroed = FALSE;
|
---|
1229 | }
|
---|
1230 | }
|
---|
1231 |
|
---|
1232 |
|
---|
1233 | /*
|
---|
1234 | * Switch to a new external colormap between output passes.
|
---|
1235 | */
|
---|
1236 |
|
---|
1237 | METHODDEF(void)
|
---|
1238 | new_color_map_2_quant (j_decompress_ptr cinfo)
|
---|
1239 | {
|
---|
1240 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
|
---|
1241 |
|
---|
1242 | /* Reset the inverse color map */
|
---|
1243 | cquantize->needs_zeroed = TRUE;
|
---|
1244 | }
|
---|
1245 |
|
---|
1246 |
|
---|
1247 | /*
|
---|
1248 | * Module initialization routine for 2-pass color quantization.
|
---|
1249 | */
|
---|
1250 |
|
---|
1251 | GLOBAL(void)
|
---|
1252 | jinit_2pass_quantizer (j_decompress_ptr cinfo)
|
---|
1253 | {
|
---|
1254 | my_cquantize_ptr cquantize;
|
---|
1255 | int i;
|
---|
1256 |
|
---|
1257 | cquantize = (my_cquantize_ptr)
|
---|
1258 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
1259 | SIZEOF(my_cquantizer));
|
---|
1260 | cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
|
---|
1261 | cquantize->pub.start_pass = start_pass_2_quant;
|
---|
1262 | cquantize->pub.new_color_map = new_color_map_2_quant;
|
---|
1263 | cquantize->fserrors = NULL; /* flag optional arrays not allocated */
|
---|
1264 | cquantize->error_limiter = NULL;
|
---|
1265 |
|
---|
1266 | /* Make sure jdmaster didn't give me a case I can't handle */
|
---|
1267 | if (cinfo->out_color_components != 3)
|
---|
1268 | ERREXIT(cinfo, JERR_NOTIMPL);
|
---|
1269 |
|
---|
1270 | /* Allocate the histogram/inverse colormap storage */
|
---|
1271 | cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
|
---|
1272 | ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
|
---|
1273 | for (i = 0; i < HIST_C0_ELEMS; i++) {
|
---|
1274 | cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
|
---|
1275 | ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
1276 | HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
|
---|
1277 | }
|
---|
1278 | cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
|
---|
1279 |
|
---|
1280 | /* Allocate storage for the completed colormap, if required.
|
---|
1281 | * We do this now since it is FAR storage and may affect
|
---|
1282 | * the memory manager's space calculations.
|
---|
1283 | */
|
---|
1284 | if (cinfo->enable_2pass_quant) {
|
---|
1285 | /* Make sure color count is acceptable */
|
---|
1286 | int desired = cinfo->desired_number_of_colors;
|
---|
1287 | /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
|
---|
1288 | if (desired < 8)
|
---|
1289 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
|
---|
1290 | /* Make sure colormap indexes can be represented by JSAMPLEs */
|
---|
1291 | if (desired > MAXNUMCOLORS)
|
---|
1292 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
|
---|
1293 | cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
|
---|
1294 | ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
|
---|
1295 | cquantize->desired = desired;
|
---|
1296 | } else
|
---|
1297 | cquantize->sv_colormap = NULL;
|
---|
1298 |
|
---|
1299 | /* Only F-S dithering or no dithering is supported. */
|
---|
1300 | /* If user asks for ordered dither, give him F-S. */
|
---|
1301 | if (cinfo->dither_mode != JDITHER_NONE)
|
---|
1302 | cinfo->dither_mode = JDITHER_FS;
|
---|
1303 |
|
---|
1304 | /* Allocate Floyd-Steinberg workspace if necessary.
|
---|
1305 | * This isn't really needed until pass 2, but again it is FAR storage.
|
---|
1306 | * Although we will cope with a later change in dither_mode,
|
---|
1307 | * we do not promise to honor max_memory_to_use if dither_mode changes.
|
---|
1308 | */
|
---|
1309 | if (cinfo->dither_mode == JDITHER_FS) {
|
---|
1310 | cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
|
---|
1311 | ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
1312 | (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
|
---|
1313 | /* Might as well create the error-limiting table too. */
|
---|
1314 | init_error_limit(cinfo);
|
---|
1315 | }
|
---|
1316 | }
|
---|
1317 |
|
---|
1318 | #endif /* QUANT_2PASS_SUPPORTED */
|
---|