source: golgotha/src/i4/loaders/jpg/jquant1.cc @ 608

Last change on this file since 608 was 80, checked in by Sam Hocevar, 15 years ago
  • Adding the Golgotha source code. Not sure what's going to be interesting in there, but since it's all public domain, there's certainly stuff to pick up.
File size: 31.9 KB
Line 
1/********************************************************************** <BR>
2  This file is part of Crack dot Com's free source code release of
3  Golgotha. <a href="http://www.crack.com/golgotha_release"> <BR> for
4  information about compiling & licensing issues visit this URL</a>
5  <PRE> If that doesn't help, contact Jonathan Clark at
6  golgotha_source@usa.net (Subject should have "GOLG" in it)
7***********************************************************************/
8
9/*
10 * jquant1.c
11 *
12 * Copyright (C) 1991-1996, Thomas G. Lane.
13 * This file is part of the Independent JPEG Group's software.
14 * For conditions of distribution and use, see the accompanying README file.
15 *
16 * This file contains 1-pass color quantization (color mapping) routines.
17 * These routines provide mapping to a fixed color map using equally spaced
18 * color values.  Optional Floyd-Steinberg or ordered dithering is available.
19 */
20
21#define JPEG_INTERNALS
22#include "loaders/jpg/jinclude.h"
23#include "loaders/jpg/jpeglib.h"
24
25#ifdef QUANT_1PASS_SUPPORTED
26
27
28/*
29 * The main purpose of 1-pass quantization is to provide a fast, if not very
30 * high quality, colormapped output capability.  A 2-pass quantizer usually
31 * gives better visual quality; however, for quantized grayscale output this
32 * quantizer is perfectly adequate.  Dithering is highly recommended with this
33 * quantizer, though you can turn it off if you really want to.
34 *
35 * In 1-pass quantization the colormap must be chosen in advance of seeing the
36 * image.  We use a map consisting of all combinations of Ncolors[i] color
37 * values for the i'th component.  The Ncolors[] values are chosen so that
38 * their product, the total number of colors, is no more than that requested.
39 * (In most cases, the product will be somewhat less.)
40 *
41 * Since the colormap is orthogonal, the representative value for each color
42 * component can be determined without considering the other components;
43 * then these indexes can be combined into a colormap index by a standard
44 * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
45 * can be precalculated and stored in the lookup table colorindex[].
46 * colorindex[i][j] maps pixel value j in component i to the nearest
47 * representative value (grid plane) for that component; this index is
48 * multiplied by the array stride for component i, so that the
49 * index of the colormap entry closest to a given pixel value is just
50 *    sum( colorindex[component-number][pixel-component-value] )
51 * Aside from being fast, this scheme allows for variable spacing between
52 * representative values with no additional lookup cost.
53 *
54 * If gamma correction has been applied in color conversion, it might be wise
55 * to adjust the color grid spacing so that the representative colors are
56 * equidistant in linear space.  At this writing, gamma correction is not
57 * implemented by jdcolor, so nothing is done here.
58 */
59
60
61/* Declarations for ordered dithering.
62 *
63 * We use a standard 16x16 ordered dither array.  The basic concept of ordered
64 * dithering is described in many references, for instance Dale Schumacher's
65 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
66 * In place of Schumacher's comparisons against a "threshold" value, we add a
67 * "dither" value to the input pixel and then round the result to the nearest
68 * output value.  The dither value is equivalent to (0.5 - threshold) times
69 * the distance between output values.  For ordered dithering, we assume that
70 * the output colors are equally spaced; if not, results will probably be
71 * worse, since the dither may be too much or too little at a given point.
72 *
73 * The normal calculation would be to form pixel value + dither, range-limit
74 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
75 * We can skip the separate range-limiting step by extending the colorindex
76 * table in both directions.
77 */
78
79#define ODITHER_SIZE  16        /* dimension of dither matrix */
80/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
81#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)       /* # cells in matrix */
82#define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
83
84typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
85typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
86
87static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
88  /* Bayer's order-4 dither array.  Generated by the code given in
89   * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
90   * The values in this array must range from 0 to ODITHER_CELLS-1.
91   */
92  {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
93  { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
94  {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
95  { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
96  {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
97  { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
98  {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
99  { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
100  {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
101  { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
102  {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
103  { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
104  {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
105  { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
106  {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
107  { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
108};
109
110
111/* Declarations for Floyd-Steinberg dithering.
112 *
113 * Errors are accumulated into the array fserrors[], at a resolution of
114 * 1/16th of a pixel count.  The error at a given pixel is propagated
115 * to its not-yet-processed neighbors using the standard F-S fractions,
116 *              ...     (here)  7/16
117 *              3/16    5/16    1/16
118 * We work left-to-right on even rows, right-to-left on odd rows.
119 *
120 * We can get away with a single array (holding one row's worth of errors)
121 * by using it to store the current row's errors at pixel columns not yet
122 * processed, but the next row's errors at columns already processed.  We
123 * need only a few extra variables to hold the errors immediately around the
124 * current column.  (If we are lucky, those variables are in registers, but
125 * even if not, they're probably cheaper to access than array elements are.)
126 *
127 * The fserrors[] array is indexed [component#][position].
128 * We provide (#columns + 2) entries per component; the extra entry at each
129 * end saves us from special-casing the first and last pixels.
130 *
131 * Note: on a wide image, we might not have enough room in a PC's near data
132 * segment to hold the error array; so it is allocated with alloc_large.
133 */
134
135#if BITS_IN_JSAMPLE == 8
136typedef INT16 FSERROR;          /* 16 bits should be enough */
137typedef int LOCFSERROR;         /* use 'int' for calculation temps */
138#else
139typedef INT32 FSERROR;          /* may need more than 16 bits */
140typedef INT32 LOCFSERROR;       /* be sure calculation temps are big enough */
141#endif
142
143typedef FSERROR FAR *FSERRPTR;  /* pointer to error array (in FAR storage!) */
144
145
146/* Private subobject */
147
148#define MAX_Q_COMPS 4           /* max components I can handle */
149
150typedef struct {
151  struct jpeg_color_quantizer pub; /* public fields */
152
153  /* Initially allocated colormap is saved here */
154  JSAMPARRAY sv_colormap;       /* The color map as a 2-D pixel array */
155  int sv_actual;                /* number of entries in use */
156
157  JSAMPARRAY colorindex;        /* Precomputed mapping for speed */
158  /* colorindex[i][j] = index of color closest to pixel value j in component i,
159   * premultiplied as described above.  Since colormap indexes must fit into
160   * JSAMPLEs, the entries of this array will too.
161   */
162  boolean is_padded;            /* is the colorindex padded for odither? */
163
164  int Ncolors[MAX_Q_COMPS];     /* # of values alloced to each component */
165
166  /* Variables for ordered dithering */
167  int row_index;                /* cur row's vertical index in dither matrix */
168  ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
169
170  /* Variables for Floyd-Steinberg dithering */
171  FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
172  boolean on_odd_row;           /* flag to remember which row we are on */
173} my_cquantizer;
174
175typedef my_cquantizer * my_cquantize_ptr;
176
177
178/*
179 * Policy-making subroutines for create_colormap and create_colorindex.
180 * These routines determine the colormap to be used.  The rest of the module
181 * only assumes that the colormap is orthogonal.
182 *
183 *  * select_ncolors decides how to divvy up the available colors
184 *    among the components.
185 *  * output_value defines the set of representative values for a component.
186 *  * largest_input_value defines the mapping from input values to
187 *    representative values for a component.
188 * Note that the latter two routines may impose different policies for
189 * different components, though this is not currently done.
190 */
191
192
193LOCAL(int)
194select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
195/* Determine allocation of desired colors to components, */
196/* and fill in Ncolors[] array to indicate choice. */
197/* Return value is total number of colors (product of Ncolors[] values). */
198{
199  int nc = cinfo->out_color_components; /* number of color components */
200  int max_colors = cinfo->desired_number_of_colors;
201  int total_colors, iroot, i, j;
202  boolean changed;
203  long temp;
204  static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
205
206  /* We can allocate at least the nc'th root of max_colors per component. */
207  /* Compute floor(nc'th root of max_colors). */
208  iroot = 1;
209  do {
210    iroot++;
211    temp = iroot;               /* set temp = iroot ** nc */
212    for (i = 1; i < nc; i++)
213      temp *= iroot;
214  } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
215  iroot--;                      /* now iroot = floor(root) */
216
217  /* Must have at least 2 color values per component */
218  if (iroot < 2)
219    ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
220
221  /* Initialize to iroot color values for each component */
222  total_colors = 1;
223  for (i = 0; i < nc; i++) {
224    Ncolors[i] = iroot;
225    total_colors *= iroot;
226  }
227  /* We may be able to increment the count for one or more components without
228   * exceeding max_colors, though we know not all can be incremented.
229   * Sometimes, the first component can be incremented more than once!
230   * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
231   * In RGB colorspace, try to increment G first, then R, then B.
232   */
233  do {
234    changed = FALSE;
235    for (i = 0; i < nc; i++) {
236      j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
237      /* calculate new total_colors if Ncolors[j] is incremented */
238      temp = total_colors / Ncolors[j];
239      temp *= Ncolors[j]+1;     /* done in long arith to avoid oflo */
240      if (temp > (long) max_colors)
241        break;                  /* won't fit, done with this pass */
242      Ncolors[j]++;             /* OK, apply the increment */
243      total_colors = (int) temp;
244      changed = TRUE;
245    }
246  } while (changed);
247
248  return total_colors;
249}
250
251
252LOCAL(int)
253output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
254/* Return j'th output value, where j will range from 0 to maxj */
255/* The output values must fall in 0..MAXJSAMPLE in increasing order */
256{
257  /* We always provide values 0 and MAXJSAMPLE for each component;
258   * any additional values are equally spaced between these limits.
259   * (Forcing the upper and lower values to the limits ensures that
260   * dithering can't produce a color outside the selected gamut.)
261   */
262  return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
263}
264
265
266LOCAL(int)
267largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
268/* Return largest input value that should map to j'th output value */
269/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
270{
271  /* Breakpoints are halfway between values returned by output_value */
272  return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
273}
274
275
276/*
277 * Create the colormap.
278 */
279
280LOCAL(void)
281create_colormap (j_decompress_ptr cinfo)
282{
283  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
284  JSAMPARRAY colormap;          /* Created colormap */
285  int total_colors;             /* Number of distinct output colors */
286  int i,j,k, nci, blksize, blkdist, ptr, val;
287
288  /* Select number of colors for each component */
289  total_colors = select_ncolors(cinfo, cquantize->Ncolors);
290
291  /* Report selected color counts */
292  if (cinfo->out_color_components == 3)
293    TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
294             total_colors, cquantize->Ncolors[0],
295             cquantize->Ncolors[1], cquantize->Ncolors[2]);
296  else
297    TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
298
299  /* Allocate and fill in the colormap. */
300  /* The colors are ordered in the map in standard row-major order, */
301  /* i.e. rightmost (highest-indexed) color changes most rapidly. */
302
303  colormap = (*cinfo->mem->alloc_sarray)
304    ((j_common_ptr) cinfo, JPOOL_IMAGE,
305     (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
306
307  /* blksize is number of adjacent repeated entries for a component */
308  /* blkdist is distance between groups of identical entries for a component */
309  blkdist = total_colors;
310
311  for (i = 0; i < cinfo->out_color_components; i++) {
312    /* fill in colormap entries for i'th color component */
313    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
314    blksize = blkdist / nci;
315    for (j = 0; j < nci; j++) {
316      /* Compute j'th output value (out of nci) for component */
317      val = output_value(cinfo, i, j, nci-1);
318      /* Fill in all colormap entries that have this value of this component */
319      for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
320        /* fill in blksize entries beginning at ptr */
321        for (k = 0; k < blksize; k++)
322          colormap[i][ptr+k] = (JSAMPLE) val;
323      }
324    }
325    blkdist = blksize;          /* blksize of this color is blkdist of next */
326  }
327
328  /* Save the colormap in private storage,
329   * where it will survive color quantization mode changes.
330   */
331  cquantize->sv_colormap = colormap;
332  cquantize->sv_actual = total_colors;
333}
334
335
336/*
337 * Create the color index table.
338 */
339
340LOCAL(void)
341create_colorindex (j_decompress_ptr cinfo)
342{
343  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
344  JSAMPROW indexptr;
345  int i,j,k, nci, blksize, val, pad;
346
347  /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
348   * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
349   * This is not necessary in the other dithering modes.  However, we
350   * flag whether it was done in case user changes dithering mode.
351   */
352  if (cinfo->dither_mode == JDITHER_ORDERED) {
353    pad = MAXJSAMPLE*2;
354    cquantize->is_padded = TRUE;
355  } else {
356    pad = 0;
357    cquantize->is_padded = FALSE;
358  }
359
360  cquantize->colorindex = (*cinfo->mem->alloc_sarray)
361    ((j_common_ptr) cinfo, JPOOL_IMAGE,
362     (JDIMENSION) (MAXJSAMPLE+1 + pad),
363     (JDIMENSION) cinfo->out_color_components);
364
365  /* blksize is number of adjacent repeated entries for a component */
366  blksize = cquantize->sv_actual;
367
368  for (i = 0; i < cinfo->out_color_components; i++) {
369    /* fill in colorindex entries for i'th color component */
370    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
371    blksize = blksize / nci;
372
373    /* adjust colorindex pointers to provide padding at negative indexes. */
374    if (pad)
375      cquantize->colorindex[i] += MAXJSAMPLE;
376
377    /* in loop, val = index of current output value, */
378    /* and k = largest j that maps to current val */
379    indexptr = cquantize->colorindex[i];
380    val = 0;
381    k = largest_input_value(cinfo, i, 0, nci-1);
382    for (j = 0; j <= MAXJSAMPLE; j++) {
383      while (j > k)             /* advance val if past boundary */
384        k = largest_input_value(cinfo, i, ++val, nci-1);
385      /* premultiply so that no multiplication needed in main processing */
386      indexptr[j] = (JSAMPLE) (val * blksize);
387    }
388    /* Pad at both ends if necessary */
389    if (pad)
390      for (j = 1; j <= MAXJSAMPLE; j++) {
391        indexptr[-j] = indexptr[0];
392        indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
393      }
394  }
395}
396
397
398/*
399 * Create an ordered-dither array for a component having ncolors
400 * distinct output values.
401 */
402
403LOCAL(ODITHER_MATRIX_PTR)
404make_odither_array (j_decompress_ptr cinfo, int ncolors)
405{
406  ODITHER_MATRIX_PTR odither;
407  int j,k;
408  INT32 num,den;
409
410  odither = (ODITHER_MATRIX_PTR)
411    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
412                                SIZEOF(ODITHER_MATRIX));
413  /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
414   * Hence the dither value for the matrix cell with fill order f
415   * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
416   * On 16-bit-int machine, be careful to avoid overflow.
417   */
418  den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
419  for (j = 0; j < ODITHER_SIZE; j++) {
420    for (k = 0; k < ODITHER_SIZE; k++) {
421      num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
422            * MAXJSAMPLE;
423      /* Ensure round towards zero despite C's lack of consistency
424       * about rounding negative values in integer division...
425       */
426      odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
427    }
428  }
429  return odither;
430}
431
432
433/*
434 * Create the ordered-dither tables.
435 * Components having the same number of representative colors may
436 * share a dither table.
437 */
438
439LOCAL(void)
440create_odither_tables (j_decompress_ptr cinfo)
441{
442  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
443  ODITHER_MATRIX_PTR odither;
444  int i, j, nci;
445
446  for (i = 0; i < cinfo->out_color_components; i++) {
447    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
448    odither = NULL;             /* search for matching prior component */
449    for (j = 0; j < i; j++) {
450      if (nci == cquantize->Ncolors[j]) {
451        odither = cquantize->odither[j];
452        break;
453      }
454    }
455    if (odither == NULL)        /* need a new table? */
456      odither = make_odither_array(cinfo, nci);
457    cquantize->odither[i] = odither;
458  }
459}
460
461
462/*
463 * Map some rows of pixels to the output colormapped representation.
464 */
465
466METHODDEF(void)
467color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
468                JSAMPARRAY output_buf, int num_rows)
469/* General case, no dithering */
470{
471  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
472  JSAMPARRAY colorindex = cquantize->colorindex;
473  register int pixcode, ci;
474  register JSAMPROW ptrin, ptrout;
475  int row;
476  JDIMENSION col;
477  JDIMENSION width = cinfo->output_width;
478  register int nc = cinfo->out_color_components;
479
480  for (row = 0; row < num_rows; row++) {
481    ptrin = input_buf[row];
482    ptrout = output_buf[row];
483    for (col = width; col > 0; col--) {
484      pixcode = 0;
485      for (ci = 0; ci < nc; ci++) {
486        pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
487      }
488      *ptrout++ = (JSAMPLE) pixcode;
489    }
490  }
491}
492
493
494METHODDEF(void)
495color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
496                 JSAMPARRAY output_buf, int num_rows)
497/* Fast path for out_color_components==3, no dithering */
498{
499  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
500  register int pixcode;
501  register JSAMPROW ptrin, ptrout;
502  JSAMPROW colorindex0 = cquantize->colorindex[0];
503  JSAMPROW colorindex1 = cquantize->colorindex[1];
504  JSAMPROW colorindex2 = cquantize->colorindex[2];
505  int row;
506  JDIMENSION col;
507  JDIMENSION width = cinfo->output_width;
508
509  for (row = 0; row < num_rows; row++) {
510    ptrin = input_buf[row];
511    ptrout = output_buf[row];
512    for (col = width; col > 0; col--) {
513      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
514      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
515      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
516      *ptrout++ = (JSAMPLE) pixcode;
517    }
518  }
519}
520
521
522METHODDEF(void)
523quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
524                     JSAMPARRAY output_buf, int num_rows)
525/* General case, with ordered dithering */
526{
527  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
528  register JSAMPROW input_ptr;
529  register JSAMPROW output_ptr;
530  JSAMPROW colorindex_ci;
531  int * dither;                 /* points to active row of dither matrix */
532  int row_index, col_index;     /* current indexes into dither matrix */
533  int nc = cinfo->out_color_components;
534  int ci;
535  int row;
536  JDIMENSION col;
537  JDIMENSION width = cinfo->output_width;
538
539  for (row = 0; row < num_rows; row++) {
540    /* Initialize output values to 0 so can process components separately */
541    jzero_far((void FAR *) output_buf[row],
542              (size_t) (width * SIZEOF(JSAMPLE)));
543    row_index = cquantize->row_index;
544    for (ci = 0; ci < nc; ci++) {
545      input_ptr = input_buf[row] + ci;
546      output_ptr = output_buf[row];
547      colorindex_ci = cquantize->colorindex[ci];
548      dither = cquantize->odither[ci][row_index];
549      col_index = 0;
550
551      for (col = width; col > 0; col--) {
552        /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
553         * select output value, accumulate into output code for this pixel.
554         * Range-limiting need not be done explicitly, as we have extended
555         * the colorindex table to produce the right answers for out-of-range
556         * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
557         * required amount of padding.
558         */
559        *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
560        input_ptr += nc;
561        output_ptr++;
562        col_index = (col_index + 1) & ODITHER_MASK;
563      }
564    }
565    /* Advance row index for next row */
566    row_index = (row_index + 1) & ODITHER_MASK;
567    cquantize->row_index = row_index;
568  }
569}
570
571
572METHODDEF(void)
573quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
574                      JSAMPARRAY output_buf, int num_rows)
575/* Fast path for out_color_components==3, with ordered dithering */
576{
577  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
578  register int pixcode;
579  register JSAMPROW input_ptr;
580  register JSAMPROW output_ptr;
581  JSAMPROW colorindex0 = cquantize->colorindex[0];
582  JSAMPROW colorindex1 = cquantize->colorindex[1];
583  JSAMPROW colorindex2 = cquantize->colorindex[2];
584  int * dither0;                /* points to active row of dither matrix */
585  int * dither1;
586  int * dither2;
587  int row_index, col_index;     /* current indexes into dither matrix */
588  int row;
589  JDIMENSION col;
590  JDIMENSION width = cinfo->output_width;
591
592  for (row = 0; row < num_rows; row++) {
593    row_index = cquantize->row_index;
594    input_ptr = input_buf[row];
595    output_ptr = output_buf[row];
596    dither0 = cquantize->odither[0][row_index];
597    dither1 = cquantize->odither[1][row_index];
598    dither2 = cquantize->odither[2][row_index];
599    col_index = 0;
600
601    for (col = width; col > 0; col--) {
602      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
603                                        dither0[col_index]]);
604      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
605                                        dither1[col_index]]);
606      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
607                                        dither2[col_index]]);
608      *output_ptr++ = (JSAMPLE) pixcode;
609      col_index = (col_index + 1) & ODITHER_MASK;
610    }
611    row_index = (row_index + 1) & ODITHER_MASK;
612    cquantize->row_index = row_index;
613  }
614}
615
616
617METHODDEF(void)
618quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
619                    JSAMPARRAY output_buf, int num_rows)
620/* General case, with Floyd-Steinberg dithering */
621{
622  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
623  register LOCFSERROR cur;      /* current error or pixel value */
624  LOCFSERROR belowerr;          /* error for pixel below cur */
625  LOCFSERROR bpreverr;          /* error for below/prev col */
626  LOCFSERROR bnexterr;          /* error for below/next col */
627  LOCFSERROR delta;
628  register FSERRPTR errorptr;   /* => fserrors[] at column before current */
629  register JSAMPROW input_ptr;
630  register JSAMPROW output_ptr;
631  JSAMPROW colorindex_ci;
632  JSAMPROW colormap_ci;
633  int pixcode;
634  int nc = cinfo->out_color_components;
635  int dir;                      /* 1 for left-to-right, -1 for right-to-left */
636  int dirnc;                    /* dir * nc */
637  int ci;
638  int row;
639  JDIMENSION col;
640  JDIMENSION width = cinfo->output_width;
641  JSAMPLE *range_limit = cinfo->sample_range_limit;
642  SHIFT_TEMPS
643
644  for (row = 0; row < num_rows; row++) {
645    /* Initialize output values to 0 so can process components separately */
646    jzero_far((void FAR *) output_buf[row],
647              (size_t) (width * SIZEOF(JSAMPLE)));
648    for (ci = 0; ci < nc; ci++) {
649      input_ptr = input_buf[row] + ci;
650      output_ptr = output_buf[row];
651      if (cquantize->on_odd_row) {
652        /* work right to left in this row */
653        input_ptr += (width-1) * nc; /* so point to rightmost pixel */
654        output_ptr += width-1;
655        dir = -1;
656        dirnc = -nc;
657        errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
658      } else {
659        /* work left to right in this row */
660        dir = 1;
661        dirnc = nc;
662        errorptr = cquantize->fserrors[ci]; /* => entry before first column */
663      }
664      colorindex_ci = cquantize->colorindex[ci];
665      colormap_ci = cquantize->sv_colormap[ci];
666      /* Preset error values: no error propagated to first pixel from left */
667      cur = 0;
668      /* and no error propagated to row below yet */
669      belowerr = bpreverr = 0;
670
671      for (col = width; col > 0; col--) {
672        /* cur holds the error propagated from the previous pixel on the
673         * current line.  Add the error propagated from the previous line
674         * to form the complete error correction term for this pixel, and
675         * round the error term (which is expressed * 16) to an integer.
676         * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
677         * for either sign of the error value.
678         * Note: errorptr points to *previous* column's array entry.
679         */
680        cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
681        /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
682         * The maximum error is +- MAXJSAMPLE; this sets the required size
683         * of the range_limit array.
684         */
685        cur += GETJSAMPLE(*input_ptr);
686        cur = GETJSAMPLE(range_limit[cur]);
687        /* Select output value, accumulate into output code for this pixel */
688        pixcode = GETJSAMPLE(colorindex_ci[cur]);
689        *output_ptr += (JSAMPLE) pixcode;
690        /* Compute actual representation error at this pixel */
691        /* Note: we can do this even though we don't have the final */
692        /* pixel code, because the colormap is orthogonal. */
693        cur -= GETJSAMPLE(colormap_ci[pixcode]);
694        /* Compute error fractions to be propagated to adjacent pixels.
695         * Add these into the running sums, and simultaneously shift the
696         * next-line error sums left by 1 column.
697         */
698        bnexterr = cur;
699        delta = cur * 2;
700        cur += delta;           /* form error * 3 */
701        errorptr[0] = (FSERROR) (bpreverr + cur);
702        cur += delta;           /* form error * 5 */
703        bpreverr = belowerr + cur;
704        belowerr = bnexterr;
705        cur += delta;           /* form error * 7 */
706        /* At this point cur contains the 7/16 error value to be propagated
707         * to the next pixel on the current line, and all the errors for the
708         * next line have been shifted over. We are therefore ready to move on.
709         */
710        input_ptr += dirnc;     /* advance input ptr to next column */
711        output_ptr += dir;      /* advance output ptr to next column */
712        errorptr += dir;        /* advance errorptr to current column */
713      }
714      /* Post-loop cleanup: we must unload the final error value into the
715       * final fserrors[] entry.  Note we need not unload belowerr because
716       * it is for the dummy column before or after the actual array.
717       */
718      errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
719    }
720    cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
721  }
722}
723
724
725/*
726 * Allocate workspace for Floyd-Steinberg errors.
727 */
728
729LOCAL(void)
730alloc_fs_workspace (j_decompress_ptr cinfo)
731{
732  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
733  size_t arraysize;
734  int i;
735
736  arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
737  for (i = 0; i < cinfo->out_color_components; i++) {
738    cquantize->fserrors[i] = (FSERRPTR)
739      (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
740  }
741}
742
743
744/*
745 * Initialize for one-pass color quantization.
746 */
747
748METHODDEF(void)
749start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
750{
751  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
752  size_t arraysize;
753  int i;
754
755  /* Install my colormap. */
756  cinfo->colormap = cquantize->sv_colormap;
757  cinfo->actual_number_of_colors = cquantize->sv_actual;
758
759  /* Initialize for desired dithering mode. */
760  switch (cinfo->dither_mode) {
761  case JDITHER_NONE:
762    if (cinfo->out_color_components == 3)
763      cquantize->pub.color_quantize = color_quantize3;
764    else
765      cquantize->pub.color_quantize = color_quantize;
766    break;
767  case JDITHER_ORDERED:
768    if (cinfo->out_color_components == 3)
769      cquantize->pub.color_quantize = quantize3_ord_dither;
770    else
771      cquantize->pub.color_quantize = quantize_ord_dither;
772    cquantize->row_index = 0;   /* initialize state for ordered dither */
773    /* If user changed to ordered dither from another mode,
774     * we must recreate the color index table with padding.
775     * This will cost extra space, but probably isn't very likely.
776     */
777    if (! cquantize->is_padded)
778      create_colorindex(cinfo);
779    /* Create ordered-dither tables if we didn't already. */
780    if (cquantize->odither[0] == NULL)
781      create_odither_tables(cinfo);
782    break;
783  case JDITHER_FS:
784    cquantize->pub.color_quantize = quantize_fs_dither;
785    cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
786    /* Allocate Floyd-Steinberg workspace if didn't already. */
787    if (cquantize->fserrors[0] == NULL)
788      alloc_fs_workspace(cinfo);
789    /* Initialize the propagated errors to zero. */
790    arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
791    for (i = 0; i < cinfo->out_color_components; i++)
792      jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
793    break;
794  default:
795    ERREXIT(cinfo, JERR_NOT_COMPILED);
796    break;
797  }
798}
799
800
801/*
802 * Finish up at the end of the pass.
803 */
804
805METHODDEF(void)
806finish_pass_1_quant (j_decompress_ptr cinfo)
807{
808  /* no work in 1-pass case */
809}
810
811
812/*
813 * Switch to a new external colormap between output passes.
814 * Shouldn't get to this module!
815 */
816
817METHODDEF(void)
818new_color_map_1_quant (j_decompress_ptr cinfo)
819{
820  ERREXIT(cinfo, JERR_MODE_CHANGE);
821}
822
823
824/*
825 * Module initialization routine for 1-pass color quantization.
826 */
827
828GLOBAL(void)
829jinit_1pass_quantizer (j_decompress_ptr cinfo)
830{
831  my_cquantize_ptr cquantize;
832
833  cquantize = (my_cquantize_ptr)
834    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
835                                SIZEOF(my_cquantizer));
836  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
837  cquantize->pub.start_pass = start_pass_1_quant;
838  cquantize->pub.finish_pass = finish_pass_1_quant;
839  cquantize->pub.new_color_map = new_color_map_1_quant;
840  cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
841  cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
842
843  /* Make sure my internal arrays won't overflow */
844  if (cinfo->out_color_components > MAX_Q_COMPS)
845    ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
846  /* Make sure colormap indexes can be represented by JSAMPLEs */
847  if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
848    ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
849
850  /* Create the colormap and color index table. */
851  create_colormap(cinfo);
852  create_colorindex(cinfo);
853
854  /* Allocate Floyd-Steinberg workspace now if requested.
855   * We do this now since it is FAR storage and may affect the memory
856   * manager's space calculations.  If the user changes to FS dither
857   * mode in a later pass, we will allocate the space then, and will
858   * possibly overrun the max_memory_to_use setting.
859   */
860  if (cinfo->dither_mode == JDITHER_FS)
861    alloc_fs_workspace(cinfo);
862}
863
864#endif /* QUANT_1PASS_SUPPORTED */
Note: See TracBrowser for help on using the repository browser.