1 | /********************************************************************** <BR>
|
---|
2 | This file is part of Crack dot Com's free source code release of
|
---|
3 | Golgotha. <a href="http://www.crack.com/golgotha_release"> <BR> for
|
---|
4 | information about compiling & licensing issues visit this URL</a>
|
---|
5 | <PRE> If that doesn't help, contact Jonathan Clark at
|
---|
6 | golgotha_source@usa.net (Subject should have "GOLG" in it)
|
---|
7 | ***********************************************************************/
|
---|
8 |
|
---|
9 | /*
|
---|
10 | * jidctred.c
|
---|
11 | *
|
---|
12 | * Copyright (C) 1994-1996, Thomas G. Lane.
|
---|
13 | * This file is part of the Independent JPEG Group's software.
|
---|
14 | * For conditions of distribution and use, see the accompanying README file.
|
---|
15 | *
|
---|
16 | * This file contains inverse-DCT routines that produce reduced-size output:
|
---|
17 | * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
|
---|
18 | *
|
---|
19 | * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
|
---|
20 | * algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step
|
---|
21 | * with an 8-to-4 step that produces the four averages of two adjacent outputs
|
---|
22 | * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
|
---|
23 | * These steps were derived by computing the corresponding values at the end
|
---|
24 | * of the normal LL&M code, then simplifying as much as possible.
|
---|
25 | *
|
---|
26 | * 1x1 is trivial: just take the DC coefficient divided by 8.
|
---|
27 | *
|
---|
28 | * See jidctint.c for additional comments.
|
---|
29 | */
|
---|
30 |
|
---|
31 | #define JPEG_INTERNALS
|
---|
32 | #include "loaders/jpg/jinclude.h"
|
---|
33 | #include "loaders/jpg/jpeglib.h"
|
---|
34 | #include "loaders/jpg/jdct.h" /* Private declarations for DCT subsystem */
|
---|
35 |
|
---|
36 | #ifdef IDCT_SCALING_SUPPORTED
|
---|
37 |
|
---|
38 |
|
---|
39 | /*
|
---|
40 | * This module is specialized to the case DCTSIZE = 8.
|
---|
41 | */
|
---|
42 |
|
---|
43 | #if DCTSIZE != 8
|
---|
44 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
---|
45 | #endif
|
---|
46 |
|
---|
47 |
|
---|
48 | /* Scaling is the same as in jidctint.c. */
|
---|
49 |
|
---|
50 | #if BITS_IN_JSAMPLE == 8
|
---|
51 | #define CONST_BITS 13
|
---|
52 | #define PASS1_BITS 2
|
---|
53 | #else
|
---|
54 | #define CONST_BITS 13
|
---|
55 | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
---|
56 | #endif
|
---|
57 |
|
---|
58 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
---|
59 | * causing a lot of useless floating-point operations at run time.
|
---|
60 | * To get around this we use the following pre-calculated constants.
|
---|
61 | * If you change CONST_BITS you may want to add appropriate values.
|
---|
62 | * (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
---|
63 | */
|
---|
64 |
|
---|
65 | #if CONST_BITS == 13
|
---|
66 | #define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */
|
---|
67 | #define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */
|
---|
68 | #define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */
|
---|
69 | #define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */
|
---|
70 | #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
|
---|
71 | #define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */
|
---|
72 | #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
|
---|
73 | #define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */
|
---|
74 | #define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */
|
---|
75 | #define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */
|
---|
76 | #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
|
---|
77 | #define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */
|
---|
78 | #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
|
---|
79 | #define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */
|
---|
80 | #else
|
---|
81 | #define FIX_0_211164243 FIX(0.211164243)
|
---|
82 | #define FIX_0_509795579 FIX(0.509795579)
|
---|
83 | #define FIX_0_601344887 FIX(0.601344887)
|
---|
84 | #define FIX_0_720959822 FIX(0.720959822)
|
---|
85 | #define FIX_0_765366865 FIX(0.765366865)
|
---|
86 | #define FIX_0_850430095 FIX(0.850430095)
|
---|
87 | #define FIX_0_899976223 FIX(0.899976223)
|
---|
88 | #define FIX_1_061594337 FIX(1.061594337)
|
---|
89 | #define FIX_1_272758580 FIX(1.272758580)
|
---|
90 | #define FIX_1_451774981 FIX(1.451774981)
|
---|
91 | #define FIX_1_847759065 FIX(1.847759065)
|
---|
92 | #define FIX_2_172734803 FIX(2.172734803)
|
---|
93 | #define FIX_2_562915447 FIX(2.562915447)
|
---|
94 | #define FIX_3_624509785 FIX(3.624509785)
|
---|
95 | #endif
|
---|
96 |
|
---|
97 |
|
---|
98 | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
---|
99 | * For 8-bit samples with the recommended scaling, all the variable
|
---|
100 | * and constant values involved are no more than 16 bits wide, so a
|
---|
101 | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
|
---|
102 | * For 12-bit samples, a full 32-bit multiplication will be needed.
|
---|
103 | */
|
---|
104 |
|
---|
105 | #if BITS_IN_JSAMPLE == 8
|
---|
106 | #define MULTIPLY(var,const) MULTIPLY16C16(var,const)
|
---|
107 | #else
|
---|
108 | #define MULTIPLY(var,const) ((var) * (const))
|
---|
109 | #endif
|
---|
110 |
|
---|
111 |
|
---|
112 | /* Dequantize a coefficient by multiplying it by the multiplier-table
|
---|
113 | * entry; produce an int result. In this module, both inputs and result
|
---|
114 | * are 16 bits or less, so either int or short multiply will work.
|
---|
115 | */
|
---|
116 |
|
---|
117 | #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
|
---|
118 |
|
---|
119 |
|
---|
120 | /*
|
---|
121 | * Perform dequantization and inverse DCT on one block of coefficients,
|
---|
122 | * producing a reduced-size 4x4 output block.
|
---|
123 | */
|
---|
124 |
|
---|
125 | GLOBAL(void)
|
---|
126 | jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
---|
127 | JCOEFPTR coef_block,
|
---|
128 | JSAMPARRAY output_buf, JDIMENSION output_col)
|
---|
129 | {
|
---|
130 | INT32 tmp0, tmp2, tmp10, tmp12;
|
---|
131 | INT32 z1, z2, z3, z4;
|
---|
132 | JCOEFPTR inptr;
|
---|
133 | ISLOW_MULT_TYPE * quantptr;
|
---|
134 | int * wsptr;
|
---|
135 | JSAMPROW outptr;
|
---|
136 | JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
---|
137 | int ctr;
|
---|
138 | int workspace[DCTSIZE*4]; /* buffers data between passes */
|
---|
139 | SHIFT_TEMPS
|
---|
140 |
|
---|
141 | /* Pass 1: process columns from input, store into work array. */
|
---|
142 |
|
---|
143 | inptr = coef_block;
|
---|
144 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
---|
145 | wsptr = workspace;
|
---|
146 | for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
|
---|
147 | /* Don't bother to process column 4, because second pass won't use it */
|
---|
148 | if (ctr == DCTSIZE-4)
|
---|
149 | continue;
|
---|
150 | if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
|
---|
151 | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] | inptr[DCTSIZE*7]) == 0) {
|
---|
152 | /* AC terms all zero; we need not examine term 4 for 4x4 output */
|
---|
153 | int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
|
---|
154 |
|
---|
155 | wsptr[DCTSIZE*0] = dcval;
|
---|
156 | wsptr[DCTSIZE*1] = dcval;
|
---|
157 | wsptr[DCTSIZE*2] = dcval;
|
---|
158 | wsptr[DCTSIZE*3] = dcval;
|
---|
159 |
|
---|
160 | continue;
|
---|
161 | }
|
---|
162 |
|
---|
163 | /* Even part */
|
---|
164 |
|
---|
165 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
---|
166 | tmp0 <<= (CONST_BITS+1);
|
---|
167 |
|
---|
168 | z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
---|
169 | z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
---|
170 |
|
---|
171 | tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
|
---|
172 |
|
---|
173 | tmp10 = tmp0 + tmp2;
|
---|
174 | tmp12 = tmp0 - tmp2;
|
---|
175 |
|
---|
176 | /* Odd part */
|
---|
177 |
|
---|
178 | z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
---|
179 | z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
---|
180 | z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
---|
181 | z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
---|
182 |
|
---|
183 | tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
|
---|
184 | + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
|
---|
185 | + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
|
---|
186 | + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
|
---|
187 |
|
---|
188 | tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
|
---|
189 | + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
|
---|
190 | + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
|
---|
191 | + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
|
---|
192 |
|
---|
193 | /* Final output stage */
|
---|
194 |
|
---|
195 | wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
|
---|
196 | wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
|
---|
197 | wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
|
---|
198 | wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
|
---|
199 | }
|
---|
200 |
|
---|
201 | /* Pass 2: process 4 rows from work array, store into output array. */
|
---|
202 |
|
---|
203 | wsptr = workspace;
|
---|
204 | for (ctr = 0; ctr < 4; ctr++) {
|
---|
205 | outptr = output_buf[ctr] + output_col;
|
---|
206 | /* It's not clear whether a zero row test is worthwhile here ... */
|
---|
207 |
|
---|
208 | #ifndef NO_ZERO_ROW_TEST
|
---|
209 | if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[5] | wsptr[6] |
|
---|
210 | wsptr[7]) == 0) {
|
---|
211 | /* AC terms all zero */
|
---|
212 | JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
|
---|
213 | & RANGE_MASK];
|
---|
214 |
|
---|
215 | outptr[0] = dcval;
|
---|
216 | outptr[1] = dcval;
|
---|
217 | outptr[2] = dcval;
|
---|
218 | outptr[3] = dcval;
|
---|
219 |
|
---|
220 | wsptr += DCTSIZE; /* advance pointer to next row */
|
---|
221 | continue;
|
---|
222 | }
|
---|
223 | #endif
|
---|
224 |
|
---|
225 | /* Even part */
|
---|
226 |
|
---|
227 | tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
|
---|
228 |
|
---|
229 | tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
|
---|
230 | + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
|
---|
231 |
|
---|
232 | tmp10 = tmp0 + tmp2;
|
---|
233 | tmp12 = tmp0 - tmp2;
|
---|
234 |
|
---|
235 | /* Odd part */
|
---|
236 |
|
---|
237 | z1 = (INT32) wsptr[7];
|
---|
238 | z2 = (INT32) wsptr[5];
|
---|
239 | z3 = (INT32) wsptr[3];
|
---|
240 | z4 = (INT32) wsptr[1];
|
---|
241 |
|
---|
242 | tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
|
---|
243 | + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
|
---|
244 | + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
|
---|
245 | + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
|
---|
246 |
|
---|
247 | tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
|
---|
248 | + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
|
---|
249 | + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
|
---|
250 | + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
|
---|
251 |
|
---|
252 | /* Final output stage */
|
---|
253 |
|
---|
254 | outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
|
---|
255 | CONST_BITS+PASS1_BITS+3+1)
|
---|
256 | & RANGE_MASK];
|
---|
257 | outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
|
---|
258 | CONST_BITS+PASS1_BITS+3+1)
|
---|
259 | & RANGE_MASK];
|
---|
260 | outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
|
---|
261 | CONST_BITS+PASS1_BITS+3+1)
|
---|
262 | & RANGE_MASK];
|
---|
263 | outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
|
---|
264 | CONST_BITS+PASS1_BITS+3+1)
|
---|
265 | & RANGE_MASK];
|
---|
266 |
|
---|
267 | wsptr += DCTSIZE; /* advance pointer to next row */
|
---|
268 | }
|
---|
269 | }
|
---|
270 |
|
---|
271 |
|
---|
272 | /*
|
---|
273 | * Perform dequantization and inverse DCT on one block of coefficients,
|
---|
274 | * producing a reduced-size 2x2 output block.
|
---|
275 | */
|
---|
276 |
|
---|
277 | GLOBAL(void)
|
---|
278 | jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
---|
279 | JCOEFPTR coef_block,
|
---|
280 | JSAMPARRAY output_buf, JDIMENSION output_col)
|
---|
281 | {
|
---|
282 | INT32 tmp0, tmp10, z1;
|
---|
283 | JCOEFPTR inptr;
|
---|
284 | ISLOW_MULT_TYPE * quantptr;
|
---|
285 | int * wsptr;
|
---|
286 | JSAMPROW outptr;
|
---|
287 | JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
---|
288 | int ctr;
|
---|
289 | int workspace[DCTSIZE*2]; /* buffers data between passes */
|
---|
290 | SHIFT_TEMPS
|
---|
291 |
|
---|
292 | /* Pass 1: process columns from input, store into work array. */
|
---|
293 |
|
---|
294 | inptr = coef_block;
|
---|
295 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
---|
296 | wsptr = workspace;
|
---|
297 | for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
|
---|
298 | /* Don't bother to process columns 2,4,6 */
|
---|
299 | if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
|
---|
300 | continue;
|
---|
301 | if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*3] |
|
---|
302 | inptr[DCTSIZE*5] | inptr[DCTSIZE*7]) == 0) {
|
---|
303 | /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
|
---|
304 | int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
|
---|
305 |
|
---|
306 | wsptr[DCTSIZE*0] = dcval;
|
---|
307 | wsptr[DCTSIZE*1] = dcval;
|
---|
308 |
|
---|
309 | continue;
|
---|
310 | }
|
---|
311 |
|
---|
312 | /* Even part */
|
---|
313 |
|
---|
314 | z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
---|
315 | tmp10 = z1 << (CONST_BITS+2);
|
---|
316 |
|
---|
317 | /* Odd part */
|
---|
318 |
|
---|
319 | z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
---|
320 | tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
|
---|
321 | z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
---|
322 | tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
|
---|
323 | z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
---|
324 | tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
|
---|
325 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
---|
326 | tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
|
---|
327 |
|
---|
328 | /* Final output stage */
|
---|
329 |
|
---|
330 | wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
|
---|
331 | wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
|
---|
332 | }
|
---|
333 |
|
---|
334 | /* Pass 2: process 2 rows from work array, store into output array. */
|
---|
335 |
|
---|
336 | wsptr = workspace;
|
---|
337 | for (ctr = 0; ctr < 2; ctr++) {
|
---|
338 | outptr = output_buf[ctr] + output_col;
|
---|
339 | /* It's not clear whether a zero row test is worthwhile here ... */
|
---|
340 |
|
---|
341 | #ifndef NO_ZERO_ROW_TEST
|
---|
342 | if ((wsptr[1] | wsptr[3] | wsptr[5] | wsptr[7]) == 0) {
|
---|
343 | /* AC terms all zero */
|
---|
344 | JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
|
---|
345 | & RANGE_MASK];
|
---|
346 |
|
---|
347 | outptr[0] = dcval;
|
---|
348 | outptr[1] = dcval;
|
---|
349 |
|
---|
350 | wsptr += DCTSIZE; /* advance pointer to next row */
|
---|
351 | continue;
|
---|
352 | }
|
---|
353 | #endif
|
---|
354 |
|
---|
355 | /* Even part */
|
---|
356 |
|
---|
357 | tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
|
---|
358 |
|
---|
359 | /* Odd part */
|
---|
360 |
|
---|
361 | tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
|
---|
362 | + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
|
---|
363 | + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
|
---|
364 | + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
|
---|
365 |
|
---|
366 | /* Final output stage */
|
---|
367 |
|
---|
368 | outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
|
---|
369 | CONST_BITS+PASS1_BITS+3+2)
|
---|
370 | & RANGE_MASK];
|
---|
371 | outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
|
---|
372 | CONST_BITS+PASS1_BITS+3+2)
|
---|
373 | & RANGE_MASK];
|
---|
374 |
|
---|
375 | wsptr += DCTSIZE; /* advance pointer to next row */
|
---|
376 | }
|
---|
377 | }
|
---|
378 |
|
---|
379 |
|
---|
380 | /*
|
---|
381 | * Perform dequantization and inverse DCT on one block of coefficients,
|
---|
382 | * producing a reduced-size 1x1 output block.
|
---|
383 | */
|
---|
384 |
|
---|
385 | GLOBAL(void)
|
---|
386 | jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
---|
387 | JCOEFPTR coef_block,
|
---|
388 | JSAMPARRAY output_buf, JDIMENSION output_col)
|
---|
389 | {
|
---|
390 | int dcval;
|
---|
391 | ISLOW_MULT_TYPE * quantptr;
|
---|
392 | JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
---|
393 | SHIFT_TEMPS
|
---|
394 |
|
---|
395 | /* We hardly need an inverse DCT routine for this: just take the
|
---|
396 | * average pixel value, which is one-eighth of the DC coefficient.
|
---|
397 | */
|
---|
398 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
---|
399 | dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
|
---|
400 | dcval = (int) DESCALE((INT32) dcval, 3);
|
---|
401 |
|
---|
402 | output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
|
---|
403 | }
|
---|
404 |
|
---|
405 | #endif /* IDCT_SCALING_SUPPORTED */
|
---|