1 | /********************************************************************** <BR>
|
---|
2 | This file is part of Crack dot Com's free source code release of
|
---|
3 | Golgotha. <a href="http://www.crack.com/golgotha_release"> <BR> for
|
---|
4 | information about compiling & licensing issues visit this URL</a>
|
---|
5 | <PRE> If that doesn't help, contact Jonathan Clark at
|
---|
6 | golgotha_source@usa.net (Subject should have "GOLG" in it)
|
---|
7 | ***********************************************************************/
|
---|
8 |
|
---|
9 | /*
|
---|
10 | * jidctint.c
|
---|
11 | *
|
---|
12 | * Copyright (C) 1991-1996, Thomas G. Lane.
|
---|
13 | * This file is part of the Independent JPEG Group's software.
|
---|
14 | * For conditions of distribution and use, see the accompanying README file.
|
---|
15 | *
|
---|
16 | * This file contains a slow-but-accurate integer implementation of the
|
---|
17 | * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
---|
18 | * must also perform dequantization of the input coefficients.
|
---|
19 | *
|
---|
20 | * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
---|
21 | * on each row (or vice versa, but it's more convenient to emit a row at
|
---|
22 | * a time). Direct algorithms are also available, but they are much more
|
---|
23 | * complex and seem not to be any faster when reduced to code.
|
---|
24 | *
|
---|
25 | * This implementation is based on an algorithm described in
|
---|
26 | * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
|
---|
27 | * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
|
---|
28 | * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
|
---|
29 | * The primary algorithm described there uses 11 multiplies and 29 adds.
|
---|
30 | * We use their alternate method with 12 multiplies and 32 adds.
|
---|
31 | * The advantage of this method is that no data path contains more than one
|
---|
32 | * multiplication; this allows a very simple and accurate implementation in
|
---|
33 | * scaled fixed-point arithmetic, with a minimal number of shifts.
|
---|
34 | */
|
---|
35 |
|
---|
36 | #define JPEG_INTERNALS
|
---|
37 | #include "loaders/jpg/jinclude.h"
|
---|
38 | #include "loaders/jpg/jpeglib.h"
|
---|
39 | #include "loaders/jpg/jdct.h" /* Private declarations for DCT subsystem */
|
---|
40 |
|
---|
41 | #ifdef DCT_ISLOW_SUPPORTED
|
---|
42 |
|
---|
43 |
|
---|
44 | /*
|
---|
45 | * This module is specialized to the case DCTSIZE = 8.
|
---|
46 | */
|
---|
47 |
|
---|
48 | #if DCTSIZE != 8
|
---|
49 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
---|
50 | #endif
|
---|
51 |
|
---|
52 |
|
---|
53 | /*
|
---|
54 | * The poop on this scaling stuff is as follows:
|
---|
55 | *
|
---|
56 | * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
|
---|
57 | * larger than the true IDCT outputs. The final outputs are therefore
|
---|
58 | * a factor of N larger than desired; since N=8 this can be cured by
|
---|
59 | * a simple right shift at the end of the algorithm. The advantage of
|
---|
60 | * this arrangement is that we save two multiplications per 1-D IDCT,
|
---|
61 | * because the y0 and y4 inputs need not be divided by sqrt(N).
|
---|
62 | *
|
---|
63 | * We have to do addition and subtraction of the integer inputs, which
|
---|
64 | * is no problem, and multiplication by fractional constants, which is
|
---|
65 | * a problem to do in integer arithmetic. We multiply all the constants
|
---|
66 | * by CONST_SCALE and convert them to integer constants (thus retaining
|
---|
67 | * CONST_BITS bits of precision in the constants). After doing a
|
---|
68 | * multiplication we have to divide the product by CONST_SCALE, with proper
|
---|
69 | * rounding, to produce the correct output. This division can be done
|
---|
70 | * cheaply as a right shift of CONST_BITS bits. We postpone shifting
|
---|
71 | * as long as possible so that partial sums can be added together with
|
---|
72 | * full fractional precision.
|
---|
73 | *
|
---|
74 | * The outputs of the first pass are scaled up by PASS1_BITS bits so that
|
---|
75 | * they are represented to better-than-integral precision. These outputs
|
---|
76 | * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
|
---|
77 | * with the recommended scaling. (To scale up 12-bit sample data further, an
|
---|
78 | * intermediate INT32 array would be needed.)
|
---|
79 | *
|
---|
80 | * To avoid overflow of the 32-bit intermediate results in pass 2, we must
|
---|
81 | * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
|
---|
82 | * shows that the values given below are the most effective.
|
---|
83 | */
|
---|
84 |
|
---|
85 | #if BITS_IN_JSAMPLE == 8
|
---|
86 | #define CONST_BITS 13
|
---|
87 | #define PASS1_BITS 2
|
---|
88 | #else
|
---|
89 | #define CONST_BITS 13
|
---|
90 | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
---|
91 | #endif
|
---|
92 |
|
---|
93 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
---|
94 | * causing a lot of useless floating-point operations at run time.
|
---|
95 | * To get around this we use the following pre-calculated constants.
|
---|
96 | * If you change CONST_BITS you may want to add appropriate values.
|
---|
97 | * (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
---|
98 | */
|
---|
99 |
|
---|
100 | #if CONST_BITS == 13
|
---|
101 | #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
|
---|
102 | #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
|
---|
103 | #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
|
---|
104 | #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
|
---|
105 | #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
|
---|
106 | #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
|
---|
107 | #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
|
---|
108 | #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
|
---|
109 | #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
|
---|
110 | #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
|
---|
111 | #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
|
---|
112 | #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
|
---|
113 | #else
|
---|
114 | #define FIX_0_298631336 FIX(0.298631336)
|
---|
115 | #define FIX_0_390180644 FIX(0.390180644)
|
---|
116 | #define FIX_0_541196100 FIX(0.541196100)
|
---|
117 | #define FIX_0_765366865 FIX(0.765366865)
|
---|
118 | #define FIX_0_899976223 FIX(0.899976223)
|
---|
119 | #define FIX_1_175875602 FIX(1.175875602)
|
---|
120 | #define FIX_1_501321110 FIX(1.501321110)
|
---|
121 | #define FIX_1_847759065 FIX(1.847759065)
|
---|
122 | #define FIX_1_961570560 FIX(1.961570560)
|
---|
123 | #define FIX_2_053119869 FIX(2.053119869)
|
---|
124 | #define FIX_2_562915447 FIX(2.562915447)
|
---|
125 | #define FIX_3_072711026 FIX(3.072711026)
|
---|
126 | #endif
|
---|
127 |
|
---|
128 |
|
---|
129 | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
---|
130 | * For 8-bit samples with the recommended scaling, all the variable
|
---|
131 | * and constant values involved are no more than 16 bits wide, so a
|
---|
132 | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
|
---|
133 | * For 12-bit samples, a full 32-bit multiplication will be needed.
|
---|
134 | */
|
---|
135 |
|
---|
136 | #if BITS_IN_JSAMPLE == 8
|
---|
137 | #define MULTIPLY(var,const) MULTIPLY16C16(var,const)
|
---|
138 | #else
|
---|
139 | #define MULTIPLY(var,const) ((var) * (const))
|
---|
140 | #endif
|
---|
141 |
|
---|
142 |
|
---|
143 | /* Dequantize a coefficient by multiplying it by the multiplier-table
|
---|
144 | * entry; produce an int result. In this module, both inputs and result
|
---|
145 | * are 16 bits or less, so either int or short multiply will work.
|
---|
146 | */
|
---|
147 |
|
---|
148 | #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
|
---|
149 |
|
---|
150 |
|
---|
151 | /*
|
---|
152 | * Perform dequantization and inverse DCT on one block of coefficients.
|
---|
153 | */
|
---|
154 |
|
---|
155 | GLOBAL(void)
|
---|
156 | jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
---|
157 | JCOEFPTR coef_block,
|
---|
158 | JSAMPARRAY output_buf, JDIMENSION output_col)
|
---|
159 | {
|
---|
160 | INT32 tmp0, tmp1, tmp2, tmp3;
|
---|
161 | INT32 tmp10, tmp11, tmp12, tmp13;
|
---|
162 | INT32 z1, z2, z3, z4, z5;
|
---|
163 | JCOEFPTR inptr;
|
---|
164 | ISLOW_MULT_TYPE * quantptr;
|
---|
165 | int * wsptr;
|
---|
166 | JSAMPROW outptr;
|
---|
167 | JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
---|
168 | int ctr;
|
---|
169 | int workspace[DCTSIZE2]; /* buffers data between passes */
|
---|
170 | SHIFT_TEMPS
|
---|
171 |
|
---|
172 | /* Pass 1: process columns from input, store into work array. */
|
---|
173 | /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
|
---|
174 | /* furthermore, we scale the results by 2**PASS1_BITS. */
|
---|
175 |
|
---|
176 | inptr = coef_block;
|
---|
177 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
---|
178 | wsptr = workspace;
|
---|
179 | for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
---|
180 | /* Due to quantization, we will usually find that many of the input
|
---|
181 | * coefficients are zero, especially the AC terms. We can exploit this
|
---|
182 | * by short-circuiting the IDCT calculation for any column in which all
|
---|
183 | * the AC terms are zero. In that case each output is equal to the
|
---|
184 | * DC coefficient (with scale factor as needed).
|
---|
185 | * With typical images and quantization tables, half or more of the
|
---|
186 | * column DCT calculations can be simplified this way.
|
---|
187 | */
|
---|
188 |
|
---|
189 | if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
|
---|
190 | inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] |
|
---|
191 | inptr[DCTSIZE*7]) == 0) {
|
---|
192 | /* AC terms all zero */
|
---|
193 | int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
|
---|
194 |
|
---|
195 | wsptr[DCTSIZE*0] = dcval;
|
---|
196 | wsptr[DCTSIZE*1] = dcval;
|
---|
197 | wsptr[DCTSIZE*2] = dcval;
|
---|
198 | wsptr[DCTSIZE*3] = dcval;
|
---|
199 | wsptr[DCTSIZE*4] = dcval;
|
---|
200 | wsptr[DCTSIZE*5] = dcval;
|
---|
201 | wsptr[DCTSIZE*6] = dcval;
|
---|
202 | wsptr[DCTSIZE*7] = dcval;
|
---|
203 |
|
---|
204 | inptr++; /* advance pointers to next column */
|
---|
205 | quantptr++;
|
---|
206 | wsptr++;
|
---|
207 | continue;
|
---|
208 | }
|
---|
209 |
|
---|
210 | /* Even part: reverse the even part of the forward DCT. */
|
---|
211 | /* The rotator is sqrt(2)*c(-6). */
|
---|
212 |
|
---|
213 | z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
---|
214 | z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
---|
215 |
|
---|
216 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
|
---|
217 | tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
|
---|
218 | tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
|
---|
219 |
|
---|
220 | z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
---|
221 | z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
---|
222 |
|
---|
223 | tmp0 = (z2 + z3) << CONST_BITS;
|
---|
224 | tmp1 = (z2 - z3) << CONST_BITS;
|
---|
225 |
|
---|
226 | tmp10 = tmp0 + tmp3;
|
---|
227 | tmp13 = tmp0 - tmp3;
|
---|
228 | tmp11 = tmp1 + tmp2;
|
---|
229 | tmp12 = tmp1 - tmp2;
|
---|
230 |
|
---|
231 | /* Odd part per figure 8; the matrix is unitary and hence its
|
---|
232 | * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
|
---|
233 | */
|
---|
234 |
|
---|
235 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
---|
236 | tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
---|
237 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
---|
238 | tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
---|
239 |
|
---|
240 | z1 = tmp0 + tmp3;
|
---|
241 | z2 = tmp1 + tmp2;
|
---|
242 | z3 = tmp0 + tmp2;
|
---|
243 | z4 = tmp1 + tmp3;
|
---|
244 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
---|
245 |
|
---|
246 | tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
---|
247 | tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
---|
248 | tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
---|
249 | tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
---|
250 | z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
|
---|
251 | z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
---|
252 | z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
---|
253 | z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
|
---|
254 |
|
---|
255 | z3 += z5;
|
---|
256 | z4 += z5;
|
---|
257 |
|
---|
258 | tmp0 += z1 + z3;
|
---|
259 | tmp1 += z2 + z4;
|
---|
260 | tmp2 += z2 + z3;
|
---|
261 | tmp3 += z1 + z4;
|
---|
262 |
|
---|
263 | /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
---|
264 |
|
---|
265 | wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
|
---|
266 | wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
|
---|
267 | wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
|
---|
268 | wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
|
---|
269 | wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
|
---|
270 | wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
|
---|
271 | wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
|
---|
272 | wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
|
---|
273 |
|
---|
274 | inptr++; /* advance pointers to next column */
|
---|
275 | quantptr++;
|
---|
276 | wsptr++;
|
---|
277 | }
|
---|
278 |
|
---|
279 | /* Pass 2: process rows from work array, store into output array. */
|
---|
280 | /* Note that we must descale the results by a factor of 8 == 2**3, */
|
---|
281 | /* and also undo the PASS1_BITS scaling. */
|
---|
282 |
|
---|
283 | wsptr = workspace;
|
---|
284 | for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
---|
285 | outptr = output_buf[ctr] + output_col;
|
---|
286 | /* Rows of zeroes can be exploited in the same way as we did with columns.
|
---|
287 | * However, the column calculation has created many nonzero AC terms, so
|
---|
288 | * the simplification applies less often (typically 5% to 10% of the time).
|
---|
289 | * On machines with very fast multiplication, it's possible that the
|
---|
290 | * test takes more time than it's worth. In that case this section
|
---|
291 | * may be commented out.
|
---|
292 | */
|
---|
293 |
|
---|
294 | #ifndef NO_ZERO_ROW_TEST
|
---|
295 | if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] |
|
---|
296 | wsptr[7]) == 0) {
|
---|
297 | /* AC terms all zero */
|
---|
298 | JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
|
---|
299 | & RANGE_MASK];
|
---|
300 |
|
---|
301 | outptr[0] = dcval;
|
---|
302 | outptr[1] = dcval;
|
---|
303 | outptr[2] = dcval;
|
---|
304 | outptr[3] = dcval;
|
---|
305 | outptr[4] = dcval;
|
---|
306 | outptr[5] = dcval;
|
---|
307 | outptr[6] = dcval;
|
---|
308 | outptr[7] = dcval;
|
---|
309 |
|
---|
310 | wsptr += DCTSIZE; /* advance pointer to next row */
|
---|
311 | continue;
|
---|
312 | }
|
---|
313 | #endif
|
---|
314 |
|
---|
315 | /* Even part: reverse the even part of the forward DCT. */
|
---|
316 | /* The rotator is sqrt(2)*c(-6). */
|
---|
317 |
|
---|
318 | z2 = (INT32) wsptr[2];
|
---|
319 | z3 = (INT32) wsptr[6];
|
---|
320 |
|
---|
321 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
|
---|
322 | tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
|
---|
323 | tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
|
---|
324 |
|
---|
325 | tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
|
---|
326 | tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
|
---|
327 |
|
---|
328 | tmp10 = tmp0 + tmp3;
|
---|
329 | tmp13 = tmp0 - tmp3;
|
---|
330 | tmp11 = tmp1 + tmp2;
|
---|
331 | tmp12 = tmp1 - tmp2;
|
---|
332 |
|
---|
333 | /* Odd part per figure 8; the matrix is unitary and hence its
|
---|
334 | * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
|
---|
335 | */
|
---|
336 |
|
---|
337 | tmp0 = (INT32) wsptr[7];
|
---|
338 | tmp1 = (INT32) wsptr[5];
|
---|
339 | tmp2 = (INT32) wsptr[3];
|
---|
340 | tmp3 = (INT32) wsptr[1];
|
---|
341 |
|
---|
342 | z1 = tmp0 + tmp3;
|
---|
343 | z2 = tmp1 + tmp2;
|
---|
344 | z3 = tmp0 + tmp2;
|
---|
345 | z4 = tmp1 + tmp3;
|
---|
346 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
|
---|
347 |
|
---|
348 | tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
|
---|
349 | tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
|
---|
350 | tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
|
---|
351 | tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
|
---|
352 | z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
|
---|
353 | z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
|
---|
354 | z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
|
---|
355 | z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
|
---|
356 |
|
---|
357 | z3 += z5;
|
---|
358 | z4 += z5;
|
---|
359 |
|
---|
360 | tmp0 += z1 + z3;
|
---|
361 | tmp1 += z2 + z4;
|
---|
362 | tmp2 += z2 + z3;
|
---|
363 | tmp3 += z1 + z4;
|
---|
364 |
|
---|
365 | /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
---|
366 |
|
---|
367 | outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
|
---|
368 | CONST_BITS+PASS1_BITS+3)
|
---|
369 | & RANGE_MASK];
|
---|
370 | outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
|
---|
371 | CONST_BITS+PASS1_BITS+3)
|
---|
372 | & RANGE_MASK];
|
---|
373 | outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
|
---|
374 | CONST_BITS+PASS1_BITS+3)
|
---|
375 | & RANGE_MASK];
|
---|
376 | outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
|
---|
377 | CONST_BITS+PASS1_BITS+3)
|
---|
378 | & RANGE_MASK];
|
---|
379 | outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
|
---|
380 | CONST_BITS+PASS1_BITS+3)
|
---|
381 | & RANGE_MASK];
|
---|
382 | outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
|
---|
383 | CONST_BITS+PASS1_BITS+3)
|
---|
384 | & RANGE_MASK];
|
---|
385 | outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
|
---|
386 | CONST_BITS+PASS1_BITS+3)
|
---|
387 | & RANGE_MASK];
|
---|
388 | outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
|
---|
389 | CONST_BITS+PASS1_BITS+3)
|
---|
390 | & RANGE_MASK];
|
---|
391 |
|
---|
392 | wsptr += DCTSIZE; /* advance pointer to next row */
|
---|
393 | }
|
---|
394 | }
|
---|
395 |
|
---|
396 | #endif /* DCT_ISLOW_SUPPORTED */
|
---|