source: golgotha/src/i4/loaders/jpg/jfdctint.cc @ 608

Last change on this file since 608 was 80, checked in by Sam Hocevar, 15 years ago
  • Adding the Golgotha source code. Not sure what's going to be interesting in there, but since it's all public domain, there's certainly stuff to pick up.
File size: 11.6 KB
Line 
1/********************************************************************** <BR>
2  This file is part of Crack dot Com's free source code release of
3  Golgotha. <a href="http://www.crack.com/golgotha_release"> <BR> for
4  information about compiling & licensing issues visit this URL</a>
5  <PRE> If that doesn't help, contact Jonathan Clark at
6  golgotha_source@usa.net (Subject should have "GOLG" in it)
7***********************************************************************/
8
9/*
10 * jfdctint.c
11 *
12 * Copyright (C) 1991-1996, Thomas G. Lane.
13 * This file is part of the Independent JPEG Group's software.
14 * For conditions of distribution and use, see the accompanying README file.
15 *
16 * This file contains a slow-but-accurate integer implementation of the
17 * forward DCT (Discrete Cosine Transform).
18 *
19 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
20 * on each column.  Direct algorithms are also available, but they are
21 * much more complex and seem not to be any faster when reduced to code.
22 *
23 * This implementation is based on an algorithm described in
24 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
25 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
26 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
27 * The primary algorithm described there uses 11 multiplies and 29 adds.
28 * We use their alternate method with 12 multiplies and 32 adds.
29 * The advantage of this method is that no data path contains more than one
30 * multiplication; this allows a very simple and accurate implementation in
31 * scaled fixed-point arithmetic, with a minimal number of shifts.
32 */
33
34#define JPEG_INTERNALS
35#include "loaders/jpg/jinclude.h"
36#include "loaders/jpg/jpeglib.h"
37#include "loaders/jpg/jdct.h"           /* Private declarations for DCT subsystem */
38
39#ifdef DCT_ISLOW_SUPPORTED
40
41
42/*
43 * This module is specialized to the case DCTSIZE = 8.
44 */
45
46#if DCTSIZE != 8
47  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
48#endif
49
50
51/*
52 * The poop on this scaling stuff is as follows:
53 *
54 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
55 * larger than the true DCT outputs.  The final outputs are therefore
56 * a factor of N larger than desired; since N=8 this can be cured by
57 * a simple right shift at the end of the algorithm.  The advantage of
58 * this arrangement is that we save two multiplications per 1-D DCT,
59 * because the y0 and y4 outputs need not be divided by sqrt(N).
60 * In the IJG code, this factor of 8 is removed by the quantization step
61 * (in jcdctmgr.c), NOT in this module.
62 *
63 * We have to do addition and subtraction of the integer inputs, which
64 * is no problem, and multiplication by fractional constants, which is
65 * a problem to do in integer arithmetic.  We multiply all the constants
66 * by CONST_SCALE and convert them to integer constants (thus retaining
67 * CONST_BITS bits of precision in the constants).  After doing a
68 * multiplication we have to divide the product by CONST_SCALE, with proper
69 * rounding, to produce the correct output.  This division can be done
70 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
71 * as long as possible so that partial sums can be added together with
72 * full fractional precision.
73 *
74 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
75 * they are represented to better-than-integral precision.  These outputs
76 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
77 * with the recommended scaling.  (For 12-bit sample data, the intermediate
78 * array is INT32 anyway.)
79 *
80 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
81 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
82 * shows that the values given below are the most effective.
83 */
84
85#if BITS_IN_JSAMPLE == 8
86#define CONST_BITS  13
87#define PASS1_BITS  2
88#else
89#define CONST_BITS  13
90#define PASS1_BITS  1           /* lose a little precision to avoid overflow */
91#endif
92
93/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
94 * causing a lot of useless floating-point operations at run time.
95 * To get around this we use the following pre-calculated constants.
96 * If you change CONST_BITS you may want to add appropriate values.
97 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
98 */
99
100#if CONST_BITS == 13
101#define FIX_0_298631336  ((INT32)  2446)        /* FIX(0.298631336) */
102#define FIX_0_390180644  ((INT32)  3196)        /* FIX(0.390180644) */
103#define FIX_0_541196100  ((INT32)  4433)        /* FIX(0.541196100) */
104#define FIX_0_765366865  ((INT32)  6270)        /* FIX(0.765366865) */
105#define FIX_0_899976223  ((INT32)  7373)        /* FIX(0.899976223) */
106#define FIX_1_175875602  ((INT32)  9633)        /* FIX(1.175875602) */
107#define FIX_1_501321110  ((INT32)  12299)       /* FIX(1.501321110) */
108#define FIX_1_847759065  ((INT32)  15137)       /* FIX(1.847759065) */
109#define FIX_1_961570560  ((INT32)  16069)       /* FIX(1.961570560) */
110#define FIX_2_053119869  ((INT32)  16819)       /* FIX(2.053119869) */
111#define FIX_2_562915447  ((INT32)  20995)       /* FIX(2.562915447) */
112#define FIX_3_072711026  ((INT32)  25172)       /* FIX(3.072711026) */
113#else
114#define FIX_0_298631336  FIX(0.298631336)
115#define FIX_0_390180644  FIX(0.390180644)
116#define FIX_0_541196100  FIX(0.541196100)
117#define FIX_0_765366865  FIX(0.765366865)
118#define FIX_0_899976223  FIX(0.899976223)
119#define FIX_1_175875602  FIX(1.175875602)
120#define FIX_1_501321110  FIX(1.501321110)
121#define FIX_1_847759065  FIX(1.847759065)
122#define FIX_1_961570560  FIX(1.961570560)
123#define FIX_2_053119869  FIX(2.053119869)
124#define FIX_2_562915447  FIX(2.562915447)
125#define FIX_3_072711026  FIX(3.072711026)
126#endif
127
128
129/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
130 * For 8-bit samples with the recommended scaling, all the variable
131 * and constant values involved are no more than 16 bits wide, so a
132 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
133 * For 12-bit samples, a full 32-bit multiplication will be needed.
134 */
135
136#if BITS_IN_JSAMPLE == 8
137#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
138#else
139#define MULTIPLY(var,const)  ((var) * (const))
140#endif
141
142
143/*
144 * Perform the forward DCT on one block of samples.
145 */
146
147GLOBAL(void)
148jpeg_fdct_islow (DCTELEM * data)
149{
150  INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
151  INT32 tmp10, tmp11, tmp12, tmp13;
152  INT32 z1, z2, z3, z4, z5;
153  DCTELEM *dataptr;
154  int ctr;
155  SHIFT_TEMPS
156
157  /* Pass 1: process rows. */
158  /* Note results are scaled up by sqrt(8) compared to a true DCT; */
159  /* furthermore, we scale the results by 2**PASS1_BITS. */
160
161  dataptr = data;
162  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
163    tmp0 = dataptr[0] + dataptr[7];
164    tmp7 = dataptr[0] - dataptr[7];
165    tmp1 = dataptr[1] + dataptr[6];
166    tmp6 = dataptr[1] - dataptr[6];
167    tmp2 = dataptr[2] + dataptr[5];
168    tmp5 = dataptr[2] - dataptr[5];
169    tmp3 = dataptr[3] + dataptr[4];
170    tmp4 = dataptr[3] - dataptr[4];
171   
172    /* Even part per LL&M figure 1 --- note that published figure is faulty;
173     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
174     */
175   
176    tmp10 = tmp0 + tmp3;
177    tmp13 = tmp0 - tmp3;
178    tmp11 = tmp1 + tmp2;
179    tmp12 = tmp1 - tmp2;
180   
181    dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
182    dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
183   
184    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
185    dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
186                                   CONST_BITS-PASS1_BITS);
187    dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
188                                   CONST_BITS-PASS1_BITS);
189   
190    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
191     * cK represents cos(K*pi/16).
192     * i0..i3 in the paper are tmp4..tmp7 here.
193     */
194   
195    z1 = tmp4 + tmp7;
196    z2 = tmp5 + tmp6;
197    z3 = tmp4 + tmp6;
198    z4 = tmp5 + tmp7;
199    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
200   
201    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
202    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
203    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
204    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
205    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
206    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
207    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
208    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
209   
210    z3 += z5;
211    z4 += z5;
212   
213    dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
214    dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
215    dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
216    dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
217   
218    dataptr += DCTSIZE;         /* advance pointer to next row */
219  }
220
221  /* Pass 2: process columns.
222   * We remove the PASS1_BITS scaling, but leave the results scaled up
223   * by an overall factor of 8.
224   */
225
226  dataptr = data;
227  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
228    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
229    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
230    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
231    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
232    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
233    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
234    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
235    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
236   
237    /* Even part per LL&M figure 1 --- note that published figure is faulty;
238     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
239     */
240   
241    tmp10 = tmp0 + tmp3;
242    tmp13 = tmp0 - tmp3;
243    tmp11 = tmp1 + tmp2;
244    tmp12 = tmp1 - tmp2;
245   
246    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
247    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
248   
249    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
250    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
251                                           CONST_BITS+PASS1_BITS);
252    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
253                                           CONST_BITS+PASS1_BITS);
254   
255    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
256     * cK represents cos(K*pi/16).
257     * i0..i3 in the paper are tmp4..tmp7 here.
258     */
259   
260    z1 = tmp4 + tmp7;
261    z2 = tmp5 + tmp6;
262    z3 = tmp4 + tmp6;
263    z4 = tmp5 + tmp7;
264    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
265   
266    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
267    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
268    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
269    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
270    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
271    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
272    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
273    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
274   
275    z3 += z5;
276    z4 += z5;
277   
278    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
279                                           CONST_BITS+PASS1_BITS);
280    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
281                                           CONST_BITS+PASS1_BITS);
282    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
283                                           CONST_BITS+PASS1_BITS);
284    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
285                                           CONST_BITS+PASS1_BITS);
286   
287    dataptr++;                  /* advance pointer to next column */
288  }
289}
290
291#endif /* DCT_ISLOW_SUPPORTED */
Note: See TracBrowser for help on using the repository browser.