1 | /********************************************************************** <BR>
|
---|
2 | This file is part of Crack dot Com's free source code release of
|
---|
3 | Golgotha. <a href="http://www.crack.com/golgotha_release"> <BR> for
|
---|
4 | information about compiling & licensing issues visit this URL</a>
|
---|
5 | <PRE> If that doesn't help, contact Jonathan Clark at
|
---|
6 | golgotha_source@usa.net (Subject should have "GOLG" in it)
|
---|
7 | ***********************************************************************/
|
---|
8 |
|
---|
9 | /*
|
---|
10 | * jfdctflt.c
|
---|
11 | *
|
---|
12 | * Copyright (C) 1994-1996, Thomas G. Lane.
|
---|
13 | * This file is part of the Independent JPEG Group's software.
|
---|
14 | * For conditions of distribution and use, see the accompanying README file.
|
---|
15 | *
|
---|
16 | * This file contains a floating-point implementation of the
|
---|
17 | * forward DCT (Discrete Cosine Transform).
|
---|
18 | *
|
---|
19 | * This implementation should be more accurate than either of the integer
|
---|
20 | * DCT implementations. However, it may not give the same results on all
|
---|
21 | * machines because of differences in roundoff behavior. Speed will depend
|
---|
22 | * on the hardware's floating point capacity.
|
---|
23 | *
|
---|
24 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
---|
25 | * on each column. Direct algorithms are also available, but they are
|
---|
26 | * much more complex and seem not to be any faster when reduced to code.
|
---|
27 | *
|
---|
28 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
---|
29 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
---|
30 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
---|
31 | * JPEG textbook (see REFERENCES section in file README). The following code
|
---|
32 | * is based directly on figure 4-8 in P&M.
|
---|
33 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
---|
34 | * possible to arrange the computation so that many of the multiplies are
|
---|
35 | * simple scalings of the final outputs. These multiplies can then be
|
---|
36 | * folded into the multiplications or divisions by the JPEG quantization
|
---|
37 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
---|
38 | * to be done in the DCT itself.
|
---|
39 | * The primary disadvantage of this method is that with a fixed-point
|
---|
40 | * implementation, accuracy is lost due to imprecise representation of the
|
---|
41 | * scaled quantization values. However, that problem does not arise if
|
---|
42 | * we use floating point arithmetic.
|
---|
43 | */
|
---|
44 |
|
---|
45 | #define JPEG_INTERNALS
|
---|
46 | #include "loaders/jpg/jinclude.h"
|
---|
47 | #include "loaders/jpg/jpeglib.h"
|
---|
48 | #include "loaders/jpg/jdct.h" /* Private declarations for DCT subsystem */
|
---|
49 |
|
---|
50 | #ifdef DCT_FLOAT_SUPPORTED
|
---|
51 |
|
---|
52 |
|
---|
53 | /*
|
---|
54 | * This module is specialized to the case DCTSIZE = 8.
|
---|
55 | */
|
---|
56 |
|
---|
57 | #if DCTSIZE != 8
|
---|
58 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
---|
59 | #endif
|
---|
60 |
|
---|
61 |
|
---|
62 | /*
|
---|
63 | * Perform the forward DCT on one block of samples.
|
---|
64 | */
|
---|
65 |
|
---|
66 | GLOBAL(void)
|
---|
67 | jpeg_fdct_float (FAST_FLOAT * data)
|
---|
68 | {
|
---|
69 | FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
---|
70 | FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
|
---|
71 | FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
|
---|
72 | FAST_FLOAT *dataptr;
|
---|
73 | int ctr;
|
---|
74 |
|
---|
75 | /* Pass 1: process rows. */
|
---|
76 |
|
---|
77 | dataptr = data;
|
---|
78 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--)
|
---|
79 | {
|
---|
80 | tmp0 = dataptr[0] + dataptr[7];
|
---|
81 | tmp7 = dataptr[0] - dataptr[7];
|
---|
82 | tmp1 = dataptr[1] + dataptr[6];
|
---|
83 | tmp6 = dataptr[1] - dataptr[6];
|
---|
84 | tmp2 = dataptr[2] + dataptr[5];
|
---|
85 | tmp5 = dataptr[2] - dataptr[5];
|
---|
86 | tmp3 = dataptr[3] + dataptr[4];
|
---|
87 | tmp4 = dataptr[3] - dataptr[4];
|
---|
88 |
|
---|
89 | /* Even part */
|
---|
90 |
|
---|
91 | tmp10 = tmp0 + tmp3; /* phase 2 */
|
---|
92 | tmp13 = tmp0 - tmp3;
|
---|
93 | tmp11 = tmp1 + tmp2;
|
---|
94 | tmp12 = tmp1 - tmp2;
|
---|
95 |
|
---|
96 | dataptr[0] = tmp10 + tmp11; /* phase 3 */
|
---|
97 | dataptr[4] = tmp10 - tmp11;
|
---|
98 |
|
---|
99 | z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
|
---|
100 | dataptr[2] = tmp13 + z1; /* phase 5 */
|
---|
101 | dataptr[6] = tmp13 - z1;
|
---|
102 |
|
---|
103 | /* Odd part */
|
---|
104 |
|
---|
105 | tmp10 = tmp4 + tmp5; /* phase 2 */
|
---|
106 | tmp11 = tmp5 + tmp6;
|
---|
107 | tmp12 = tmp6 + tmp7;
|
---|
108 |
|
---|
109 | /* The rotator is modified from fig 4-8 to avoid extra negations. */
|
---|
110 | z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
|
---|
111 | z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
|
---|
112 | z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
|
---|
113 | z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
|
---|
114 |
|
---|
115 | z11 = tmp7 + z3; /* phase 5 */
|
---|
116 | z13 = tmp7 - z3;
|
---|
117 |
|
---|
118 | dataptr[5] = z13 + z2; /* phase 6 */
|
---|
119 | dataptr[3] = z13 - z2;
|
---|
120 | dataptr[1] = z11 + z4;
|
---|
121 | dataptr[7] = z11 - z4;
|
---|
122 |
|
---|
123 | dataptr += DCTSIZE; /* advance pointer to next row */
|
---|
124 | }
|
---|
125 |
|
---|
126 | /* Pass 2: process columns. */
|
---|
127 |
|
---|
128 | dataptr = data;
|
---|
129 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
|
---|
130 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
|
---|
131 | tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
|
---|
132 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
|
---|
133 | tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
|
---|
134 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
|
---|
135 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
|
---|
136 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
|
---|
137 | tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
|
---|
138 |
|
---|
139 | /* Even part */
|
---|
140 |
|
---|
141 | tmp10 = tmp0 + tmp3; /* phase 2 */
|
---|
142 | tmp13 = tmp0 - tmp3;
|
---|
143 | tmp11 = tmp1 + tmp2;
|
---|
144 | tmp12 = tmp1 - tmp2;
|
---|
145 |
|
---|
146 | dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
|
---|
147 | dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
---|
148 |
|
---|
149 | z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
|
---|
150 | dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
|
---|
151 | dataptr[DCTSIZE*6] = tmp13 - z1;
|
---|
152 |
|
---|
153 | /* Odd part */
|
---|
154 |
|
---|
155 | tmp10 = tmp4 + tmp5; /* phase 2 */
|
---|
156 | tmp11 = tmp5 + tmp6;
|
---|
157 | tmp12 = tmp6 + tmp7;
|
---|
158 |
|
---|
159 | /* The rotator is modified from fig 4-8 to avoid extra negations. */
|
---|
160 | z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
|
---|
161 | z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
|
---|
162 | z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
|
---|
163 | z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
|
---|
164 |
|
---|
165 | z11 = tmp7 + z3; /* phase 5 */
|
---|
166 | z13 = tmp7 - z3;
|
---|
167 |
|
---|
168 | dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
|
---|
169 | dataptr[DCTSIZE*3] = z13 - z2;
|
---|
170 | dataptr[DCTSIZE*1] = z11 + z4;
|
---|
171 | dataptr[DCTSIZE*7] = z11 - z4;
|
---|
172 |
|
---|
173 | dataptr++; /* advance pointer to next column */
|
---|
174 | }
|
---|
175 | }
|
---|
176 |
|
---|
177 | #endif /* DCT_FLOAT_SUPPORTED */
|
---|