1 | /********************************************************************** <BR>
|
---|
2 | This file is part of Crack dot Com's free source code release of
|
---|
3 | Golgotha. <a href="http://www.crack.com/golgotha_release"> <BR> for
|
---|
4 | information about compiling & licensing issues visit this URL</a>
|
---|
5 | <PRE> If that doesn't help, contact Jonathan Clark at
|
---|
6 | golgotha_source@usa.net (Subject should have "GOLG" in it)
|
---|
7 | ***********************************************************************/
|
---|
8 |
|
---|
9 | /*
|
---|
10 | * jccoefct.c
|
---|
11 | *
|
---|
12 | * Copyright (C) 1994-1996, Thomas G. Lane.
|
---|
13 | * This file is part of the Independent JPEG Group's software.
|
---|
14 | * For conditions of distribution and use, see the accompanying README file.
|
---|
15 | *
|
---|
16 | * This file contains the coefficient buffer controller for compression.
|
---|
17 | * This controller is the top level of the JPEG compressor proper.
|
---|
18 | * The coefficient buffer lies between forward-DCT and entropy encoding steps.
|
---|
19 | */
|
---|
20 |
|
---|
21 | #define JPEG_INTERNALS
|
---|
22 | #include "loaders/jpg/jinclude.h"
|
---|
23 | #include "loaders/jpg/jpeglib.h"
|
---|
24 |
|
---|
25 |
|
---|
26 | /* We use a full-image coefficient buffer when doing Huffman optimization,
|
---|
27 | * and also for writing multiple-scan JPEG files. In all cases, the DCT
|
---|
28 | * step is run during the first pass, and subsequent passes need only read
|
---|
29 | * the buffered coefficients.
|
---|
30 | */
|
---|
31 | #ifdef ENTROPY_OPT_SUPPORTED
|
---|
32 | #define FULL_COEF_BUFFER_SUPPORTED
|
---|
33 | #else
|
---|
34 | #ifdef C_MULTISCAN_FILES_SUPPORTED
|
---|
35 | #define FULL_COEF_BUFFER_SUPPORTED
|
---|
36 | #endif
|
---|
37 | #endif
|
---|
38 |
|
---|
39 |
|
---|
40 | /* Private buffer controller object */
|
---|
41 |
|
---|
42 | typedef struct {
|
---|
43 | struct jpeg_c_coef_controller pub; /* public fields */
|
---|
44 |
|
---|
45 | JDIMENSION iMCU_row_num; /* iMCU row # within image */
|
---|
46 | JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
|
---|
47 | int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
---|
48 | int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
---|
49 |
|
---|
50 | /* For single-pass compression, it's sufficient to buffer just one MCU
|
---|
51 | * (although this may prove a bit slow in practice). We allocate a
|
---|
52 | * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
|
---|
53 | * MCU constructed and sent. (On 80x86, the workspace is FAR even though
|
---|
54 | * it's not really very big; this is to keep the module interfaces unchanged
|
---|
55 | * when a large coefficient buffer is necessary.)
|
---|
56 | * In multi-pass modes, this array points to the current MCU's blocks
|
---|
57 | * within the virtual arrays.
|
---|
58 | */
|
---|
59 | JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
|
---|
60 |
|
---|
61 | /* In multi-pass modes, we need a virtual block array for each component. */
|
---|
62 | jvirt_barray_ptr whole_image[MAX_COMPONENTS];
|
---|
63 | } my_coef_controller;
|
---|
64 |
|
---|
65 | typedef my_coef_controller * my_coef_ptr;
|
---|
66 |
|
---|
67 |
|
---|
68 | /* Forward declarations */
|
---|
69 | METHODDEF(boolean) compress_data
|
---|
70 | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
---|
71 | #ifdef FULL_COEF_BUFFER_SUPPORTED
|
---|
72 | METHODDEF(boolean) compress_first_pass
|
---|
73 | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
---|
74 | METHODDEF(boolean) compress_output
|
---|
75 | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
|
---|
76 | #endif
|
---|
77 |
|
---|
78 |
|
---|
79 | LOCAL(void)
|
---|
80 | start_iMCU_row (j_compress_ptr cinfo)
|
---|
81 | /* Reset within-iMCU-row counters for a new row */
|
---|
82 | {
|
---|
83 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
---|
84 |
|
---|
85 | /* In an interleaved scan, an MCU row is the same as an iMCU row.
|
---|
86 | * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
---|
87 | * But at the bottom of the image, process only what's left.
|
---|
88 | */
|
---|
89 | if (cinfo->comps_in_scan > 1) {
|
---|
90 | coef->MCU_rows_per_iMCU_row = 1;
|
---|
91 | } else {
|
---|
92 | if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
|
---|
93 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
---|
94 | else
|
---|
95 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
---|
96 | }
|
---|
97 |
|
---|
98 | coef->mcu_ctr = 0;
|
---|
99 | coef->MCU_vert_offset = 0;
|
---|
100 | }
|
---|
101 |
|
---|
102 |
|
---|
103 | /*
|
---|
104 | * Initialize for a processing pass.
|
---|
105 | */
|
---|
106 |
|
---|
107 | METHODDEF(void)
|
---|
108 | start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
|
---|
109 | {
|
---|
110 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
---|
111 |
|
---|
112 | coef->iMCU_row_num = 0;
|
---|
113 | start_iMCU_row(cinfo);
|
---|
114 |
|
---|
115 | switch (pass_mode) {
|
---|
116 | case JBUF_PASS_THRU:
|
---|
117 | if (coef->whole_image[0] != NULL)
|
---|
118 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
---|
119 | coef->pub.compress_data = compress_data;
|
---|
120 | break;
|
---|
121 | #ifdef FULL_COEF_BUFFER_SUPPORTED
|
---|
122 | case JBUF_SAVE_AND_PASS:
|
---|
123 | if (coef->whole_image[0] == NULL)
|
---|
124 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
---|
125 | coef->pub.compress_data = compress_first_pass;
|
---|
126 | break;
|
---|
127 | case JBUF_CRANK_DEST:
|
---|
128 | if (coef->whole_image[0] == NULL)
|
---|
129 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
---|
130 | coef->pub.compress_data = compress_output;
|
---|
131 | break;
|
---|
132 | #endif
|
---|
133 | default:
|
---|
134 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
---|
135 | break;
|
---|
136 | }
|
---|
137 | }
|
---|
138 |
|
---|
139 |
|
---|
140 | /*
|
---|
141 | * Process some data in the single-pass case.
|
---|
142 | * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
---|
143 | * per call, ie, v_samp_factor block rows for each component in the image.
|
---|
144 | * Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
---|
145 | *
|
---|
146 | * NB: input_buf contains a plane for each component in image.
|
---|
147 | * For single pass, this is the same as the components in the scan.
|
---|
148 | */
|
---|
149 |
|
---|
150 | METHODDEF(boolean)
|
---|
151 | compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
---|
152 | {
|
---|
153 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
---|
154 | JDIMENSION MCU_col_num; /* index of current MCU within row */
|
---|
155 | JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
---|
156 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
---|
157 | int blkn, bi, ci, yindex, yoffset, blockcnt;
|
---|
158 | JDIMENSION ypos, xpos;
|
---|
159 | jpeg_component_info *compptr;
|
---|
160 |
|
---|
161 | /* Loop to write as much as one whole iMCU row */
|
---|
162 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
---|
163 | yoffset++) {
|
---|
164 | for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
|
---|
165 | MCU_col_num++) {
|
---|
166 | /* Determine where data comes from in input_buf and do the DCT thing.
|
---|
167 | * Each call on forward_DCT processes a horizontal row of DCT blocks
|
---|
168 | * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
|
---|
169 | * sequentially. Dummy blocks at the right or bottom edge are filled in
|
---|
170 | * specially. The data in them does not matter for image reconstruction,
|
---|
171 | * so we fill them with values that will encode to the smallest amount of
|
---|
172 | * data, viz: all zeroes in the AC entries, DC entries equal to previous
|
---|
173 | * block's DC value. (Thanks to Thomas Kinsman for this idea.)
|
---|
174 | */
|
---|
175 | blkn = 0;
|
---|
176 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
177 | compptr = cinfo->cur_comp_info[ci];
|
---|
178 | blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
---|
179 | : compptr->last_col_width;
|
---|
180 | xpos = MCU_col_num * compptr->MCU_sample_width;
|
---|
181 | ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
|
---|
182 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
---|
183 | if (coef->iMCU_row_num < last_iMCU_row ||
|
---|
184 | yoffset+yindex < compptr->last_row_height) {
|
---|
185 | (*cinfo->fdct->forward_DCT) (cinfo, compptr,
|
---|
186 | input_buf[ci], coef->MCU_buffer[blkn],
|
---|
187 | ypos, xpos, (JDIMENSION) blockcnt);
|
---|
188 | if (blockcnt < compptr->MCU_width) {
|
---|
189 | /* Create some dummy blocks at the right edge of the image. */
|
---|
190 | jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
|
---|
191 | (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
|
---|
192 | for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
|
---|
193 | coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
|
---|
194 | }
|
---|
195 | }
|
---|
196 | } else {
|
---|
197 | /* Create a row of dummy blocks at the bottom of the image. */
|
---|
198 | jzero_far((void FAR *) coef->MCU_buffer[blkn],
|
---|
199 | compptr->MCU_width * SIZEOF(JBLOCK));
|
---|
200 | for (bi = 0; bi < compptr->MCU_width; bi++) {
|
---|
201 | coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
|
---|
202 | }
|
---|
203 | }
|
---|
204 | blkn += compptr->MCU_width;
|
---|
205 | ypos += DCTSIZE;
|
---|
206 | }
|
---|
207 | }
|
---|
208 | /* Try to write the MCU. In event of a suspension failure, we will
|
---|
209 | * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
|
---|
210 | */
|
---|
211 | if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
|
---|
212 | /* Suspension forced; update state counters and exit */
|
---|
213 | coef->MCU_vert_offset = yoffset;
|
---|
214 | coef->mcu_ctr = MCU_col_num;
|
---|
215 | return FALSE;
|
---|
216 | }
|
---|
217 | }
|
---|
218 | /* Completed an MCU row, but perhaps not an iMCU row */
|
---|
219 | coef->mcu_ctr = 0;
|
---|
220 | }
|
---|
221 | /* Completed the iMCU row, advance counters for next one */
|
---|
222 | coef->iMCU_row_num++;
|
---|
223 | start_iMCU_row(cinfo);
|
---|
224 | return TRUE;
|
---|
225 | }
|
---|
226 |
|
---|
227 |
|
---|
228 | #ifdef FULL_COEF_BUFFER_SUPPORTED
|
---|
229 |
|
---|
230 | /*
|
---|
231 | * Process some data in the first pass of a multi-pass case.
|
---|
232 | * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
---|
233 | * per call, ie, v_samp_factor block rows for each component in the image.
|
---|
234 | * This amount of data is read from the source buffer, DCT'd and quantized,
|
---|
235 | * and saved into the virtual arrays. We also generate suitable dummy blocks
|
---|
236 | * as needed at the right and lower edges. (The dummy blocks are constructed
|
---|
237 | * in the virtual arrays, which have been padded appropriately.) This makes
|
---|
238 | * it possible for subsequent passes not to worry about real vs. dummy blocks.
|
---|
239 | *
|
---|
240 | * We must also emit the data to the entropy encoder. This is conveniently
|
---|
241 | * done by calling compress_output() after we've loaded the current strip
|
---|
242 | * of the virtual arrays.
|
---|
243 | *
|
---|
244 | * NB: input_buf contains a plane for each component in image. All
|
---|
245 | * components are DCT'd and loaded into the virtual arrays in this pass.
|
---|
246 | * However, it may be that only a subset of the components are emitted to
|
---|
247 | * the entropy encoder during this first pass; be careful about looking
|
---|
248 | * at the scan-dependent variables (MCU dimensions, etc).
|
---|
249 | */
|
---|
250 |
|
---|
251 | METHODDEF(boolean)
|
---|
252 | compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
---|
253 | {
|
---|
254 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
---|
255 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
---|
256 | JDIMENSION blocks_across, MCUs_across, MCUindex;
|
---|
257 | int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
|
---|
258 | JCOEF lastDC;
|
---|
259 | jpeg_component_info *compptr;
|
---|
260 | JBLOCKARRAY buffer;
|
---|
261 | JBLOCKROW thisblockrow, lastblockrow;
|
---|
262 |
|
---|
263 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
---|
264 | ci++, compptr++) {
|
---|
265 | /* Align the virtual buffer for this component. */
|
---|
266 | buffer = (*cinfo->mem->access_virt_barray)
|
---|
267 | ((j_common_ptr) cinfo, coef->whole_image[ci],
|
---|
268 | coef->iMCU_row_num * compptr->v_samp_factor,
|
---|
269 | (JDIMENSION) compptr->v_samp_factor, TRUE);
|
---|
270 | /* Count non-dummy DCT block rows in this iMCU row. */
|
---|
271 | if (coef->iMCU_row_num < last_iMCU_row)
|
---|
272 | block_rows = compptr->v_samp_factor;
|
---|
273 | else {
|
---|
274 | /* NB: can't use last_row_height here, since may not be set! */
|
---|
275 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
---|
276 | if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
---|
277 | }
|
---|
278 | blocks_across = compptr->width_in_blocks;
|
---|
279 | h_samp_factor = compptr->h_samp_factor;
|
---|
280 | /* Count number of dummy blocks to be added at the right margin. */
|
---|
281 | ndummy = (int) (blocks_across % h_samp_factor);
|
---|
282 | if (ndummy > 0)
|
---|
283 | ndummy = h_samp_factor - ndummy;
|
---|
284 | /* Perform DCT for all non-dummy blocks in this iMCU row. Each call
|
---|
285 | * on forward_DCT processes a complete horizontal row of DCT blocks.
|
---|
286 | */
|
---|
287 | for (block_row = 0; block_row < block_rows; block_row++) {
|
---|
288 | thisblockrow = buffer[block_row];
|
---|
289 | (*cinfo->fdct->forward_DCT) (cinfo, compptr,
|
---|
290 | input_buf[ci], thisblockrow,
|
---|
291 | (JDIMENSION) (block_row * DCTSIZE),
|
---|
292 | (JDIMENSION) 0, blocks_across);
|
---|
293 | if (ndummy > 0) {
|
---|
294 | /* Create dummy blocks at the right edge of the image. */
|
---|
295 | thisblockrow += blocks_across; /* => first dummy block */
|
---|
296 | jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
|
---|
297 | lastDC = thisblockrow[-1][0];
|
---|
298 | for (bi = 0; bi < ndummy; bi++) {
|
---|
299 | thisblockrow[bi][0] = lastDC;
|
---|
300 | }
|
---|
301 | }
|
---|
302 | }
|
---|
303 | /* If at end of image, create dummy block rows as needed.
|
---|
304 | * The tricky part here is that within each MCU, we want the DC values
|
---|
305 | * of the dummy blocks to match the last real block's DC value.
|
---|
306 | * This squeezes a few more bytes out of the resulting file...
|
---|
307 | */
|
---|
308 | if (coef->iMCU_row_num == last_iMCU_row) {
|
---|
309 | blocks_across += ndummy; /* include lower right corner */
|
---|
310 | MCUs_across = blocks_across / h_samp_factor;
|
---|
311 | for (block_row = block_rows; block_row < compptr->v_samp_factor;
|
---|
312 | block_row++) {
|
---|
313 | thisblockrow = buffer[block_row];
|
---|
314 | lastblockrow = buffer[block_row-1];
|
---|
315 | jzero_far((void FAR *) thisblockrow,
|
---|
316 | (size_t) (blocks_across * SIZEOF(JBLOCK)));
|
---|
317 | for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
|
---|
318 | lastDC = lastblockrow[h_samp_factor-1][0];
|
---|
319 | for (bi = 0; bi < h_samp_factor; bi++) {
|
---|
320 | thisblockrow[bi][0] = lastDC;
|
---|
321 | }
|
---|
322 | thisblockrow += h_samp_factor; /* advance to next MCU in row */
|
---|
323 | lastblockrow += h_samp_factor;
|
---|
324 | }
|
---|
325 | }
|
---|
326 | }
|
---|
327 | }
|
---|
328 | /* NB: compress_output will increment iMCU_row_num if successful.
|
---|
329 | * A suspension return will result in redoing all the work above next time.
|
---|
330 | */
|
---|
331 |
|
---|
332 | /* Emit data to the entropy encoder, sharing code with subsequent passes */
|
---|
333 | return compress_output(cinfo, input_buf);
|
---|
334 | }
|
---|
335 |
|
---|
336 |
|
---|
337 | /*
|
---|
338 | * Process some data in subsequent passes of a multi-pass case.
|
---|
339 | * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
|
---|
340 | * per call, ie, v_samp_factor block rows for each component in the scan.
|
---|
341 | * The data is obtained from the virtual arrays and fed to the entropy coder.
|
---|
342 | * Returns TRUE if the iMCU row is completed, FALSE if suspended.
|
---|
343 | *
|
---|
344 | * NB: input_buf is ignored; it is likely to be a NULL pointer.
|
---|
345 | */
|
---|
346 |
|
---|
347 | METHODDEF(boolean)
|
---|
348 | compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
|
---|
349 | {
|
---|
350 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
---|
351 | JDIMENSION MCU_col_num; /* index of current MCU within row */
|
---|
352 | int blkn, ci, xindex, yindex, yoffset;
|
---|
353 | JDIMENSION start_col;
|
---|
354 | JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
---|
355 | JBLOCKROW buffer_ptr;
|
---|
356 | jpeg_component_info *compptr;
|
---|
357 |
|
---|
358 | /* Align the virtual buffers for the components used in this scan.
|
---|
359 | * NB: during first pass, this is safe only because the buffers will
|
---|
360 | * already be aligned properly, so jmemmgr.c won't need to do any I/O.
|
---|
361 | */
|
---|
362 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
363 | compptr = cinfo->cur_comp_info[ci];
|
---|
364 | buffer[ci] = (*cinfo->mem->access_virt_barray)
|
---|
365 | ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
---|
366 | coef->iMCU_row_num * compptr->v_samp_factor,
|
---|
367 | (JDIMENSION) compptr->v_samp_factor, FALSE);
|
---|
368 | }
|
---|
369 |
|
---|
370 | /* Loop to process one whole iMCU row */
|
---|
371 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
---|
372 | yoffset++) {
|
---|
373 | for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
---|
374 | MCU_col_num++) {
|
---|
375 | /* Construct list of pointers to DCT blocks belonging to this MCU */
|
---|
376 | blkn = 0; /* index of current DCT block within MCU */
|
---|
377 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
---|
378 | compptr = cinfo->cur_comp_info[ci];
|
---|
379 | start_col = MCU_col_num * compptr->MCU_width;
|
---|
380 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
---|
381 | buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
|
---|
382 | for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
|
---|
383 | coef->MCU_buffer[blkn++] = buffer_ptr++;
|
---|
384 | }
|
---|
385 | }
|
---|
386 | }
|
---|
387 | /* Try to write the MCU. */
|
---|
388 | if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
|
---|
389 | /* Suspension forced; update state counters and exit */
|
---|
390 | coef->MCU_vert_offset = yoffset;
|
---|
391 | coef->mcu_ctr = MCU_col_num;
|
---|
392 | return FALSE;
|
---|
393 | }
|
---|
394 | }
|
---|
395 | /* Completed an MCU row, but perhaps not an iMCU row */
|
---|
396 | coef->mcu_ctr = 0;
|
---|
397 | }
|
---|
398 | /* Completed the iMCU row, advance counters for next one */
|
---|
399 | coef->iMCU_row_num++;
|
---|
400 | start_iMCU_row(cinfo);
|
---|
401 | return TRUE;
|
---|
402 | }
|
---|
403 |
|
---|
404 | #endif /* FULL_COEF_BUFFER_SUPPORTED */
|
---|
405 |
|
---|
406 |
|
---|
407 | /*
|
---|
408 | * Initialize coefficient buffer controller.
|
---|
409 | */
|
---|
410 |
|
---|
411 | GLOBAL(void)
|
---|
412 | jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
|
---|
413 | {
|
---|
414 | my_coef_ptr coef;
|
---|
415 |
|
---|
416 | coef = (my_coef_ptr)
|
---|
417 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
418 | SIZEOF(my_coef_controller));
|
---|
419 | cinfo->coef = (struct jpeg_c_coef_controller *) coef;
|
---|
420 | coef->pub.start_pass = start_pass_coef;
|
---|
421 |
|
---|
422 | /* Create the coefficient buffer. */
|
---|
423 | if (need_full_buffer) {
|
---|
424 | #ifdef FULL_COEF_BUFFER_SUPPORTED
|
---|
425 | /* Allocate a full-image virtual array for each component, */
|
---|
426 | /* padded to a multiple of samp_factor DCT blocks in each direction. */
|
---|
427 | int ci;
|
---|
428 | jpeg_component_info *compptr;
|
---|
429 |
|
---|
430 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
---|
431 | ci++, compptr++) {
|
---|
432 | coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
|
---|
433 | ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
|
---|
434 | (JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
---|
435 | (long) compptr->h_samp_factor),
|
---|
436 | (JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
---|
437 | (long) compptr->v_samp_factor),
|
---|
438 | (JDIMENSION) compptr->v_samp_factor);
|
---|
439 | }
|
---|
440 | #else
|
---|
441 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
|
---|
442 | #endif
|
---|
443 | } else {
|
---|
444 | /* We only need a single-MCU buffer. */
|
---|
445 | JBLOCKROW buffer;
|
---|
446 | int i;
|
---|
447 |
|
---|
448 | buffer = (JBLOCKROW)
|
---|
449 | (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
---|
450 | C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
---|
451 | for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
|
---|
452 | coef->MCU_buffer[i] = buffer + i;
|
---|
453 | }
|
---|
454 | coef->whole_image[0] = NULL; /* flag for no virtual arrays */
|
---|
455 | }
|
---|
456 | }
|
---|